Как рассчитать мощность радиатора отопления на комнату. Расчет радиаторов отопления на квадратный метр: подбираем количество и необходимую мощность по площади

Один из наиболее важных вопросов создания комфортных условий проживания в доме или квартире – это надежная , правильно рассчитанная и смонтированная, хорошо сбалансированная система отопления. Именно поэтому создание такой системы – главнейшая задача при организации строительства собственного дома или при проведении капитального ремонта в квартире многоэтажки.

Несмотря на современное разнообразие систем отопления различных типов, лидером по по пулярности все же остается проверенная схема: контуры труб с циркулирующим по ним теплоносителем, и приборы теплообмена – радиаторы, установленные в помещениях. Казалось бы – все просто , батареи стоят под окнами и обеспечивают т ребуемый нагрев… Однако, необходимо знать, что теплоотдача от радиаторов должна соответствовать и площади помещения, и целому ряду других специфических критериев. Теплотехнические расчеты , основанные на требованиях СНиП – достаточно сложная процедура, выполняемая специалистами. Тем не менее , можно выполнить ее и своими силами, естественно, с допустимым упрощением. В настоящей публикации будет рассказано, как самостоятельно провести расчет батарей отопления на площадь обогреваемого помещения с учетом различных нюансов.

Но, для начала, нужно хотя бы бегло ознакомиться с существующими радиаторами отопления – от их параметров во многом будут зависеть и результаты проводимых расчетов .

Кратко о существующих типах радиаторов отопления

  • Стальные радиаторы панельной или трубчатой конструкции.
  • Чугунные батареи.
  • Алюминиевые радиаторы нескольких модификаций.
  • Биметаллические радиаторы.

Стальные радиаторы

Этот тип радиаторов не снискал себе особой популярности, несмотря на то, что некоторым моделям придается весьма элегантное дизайнерское оформление. Проблема в том, что недостатки таких приборов теплообмена существенно превышают их достоинства – невысокую цену¸ относительно небольшую массу и простоту монтажа.

Тонкие стальные стенки таких радиаторов недостаточно теплоёмки – быстро нагреваются, но и столь же стремительно остывают. Могут возникнуть проблемы и при гидравлических ударах – сварные соединения листов иногда дают при этом течь . Кроме того, недорогие модели, не имеющие специального покрытия, подвержены коррозии, и срок службы таких батарей невелик – обычно производители дают им довольно небольшую по длительности эксплуатации гарантию.

В подавляющем большинстве случаев стальные радиаторы представляют собой цельную конструкцию, и варьировать теплоотдачу изменением числа секций не позволяют. Они имеют паспортную тепловую мощность, которую сразу же нужно выбирать, исходя из площади и особенностей помещения, где они планируются к установке. Исключение – некоторые трубчатые радиаторы имеют возможность изменения количества секций, но это обычно делается под заказ, при изготовлении, а не в домашних условиях.

Чугунные радиаторы

Представители этого типа батарей наверняка знакомы каждому еще с раннего детства – именно такие гармошки устанавливались ранее буквально повсеместно .

Возможно, такие батареи МС -140— 500 и не отличались особым изяществом, но зато верно служили не одному поколению жильцов. Каждая секция подобного радиатора обеспечивала теплоотдачу в 160 Вт. Радиатор сборный, и количество секций, в принципе, ничем не ограничивалось.

В настоящее время в продаже немало современных чугунных радиаторов. Их уже отличает более элегантный внешний вид, ровные гладкие наружные поверхности, которые облегчают уборку. Выпускаются и эксклюзивные варианты, с интересным рельефным рисунком чугунного литься.

При всем этом, такие модели в полной мере сохраняют основные достоинства чугунных батарей:

  • Высокая теплоемкость чугуна и массивность батарей способствуют длительному сохранению и высокой отдаче тепла.
  • Чугунные батареи, при правильной сборке и качественном уплотнении соединений, не боятся гидроударов, перепадов температур.
  • Толстые чугунные стенки мало восприимчивы к коррозии и к абразивному износу.Может использоваться практически любой теплоноситель, так что такие батареи одинаково хороши и для автономной, и для центральной систем отопления.

Если не принимать в расчёт внешние данные старых чугунных батарей, то из недостатков можно отметить хрупкость металла (недопустимы акцентированные удары), относительную сложность монтажа, связанную в больше мере с массивностью. Кроме того, далеко не любые стеновые перегородки смогут выдержать вес таких радиаторов.

Алюминиевые радиаторы

Алюминиевые радиаторы, появившись сравнительно недавно, очень быстро завоевали популярность. Они относительно недороги, имеют современный, достаточно элегантный внешний вид, обладают отменной теплоотдачей.

Качественные алюминиевые батареи способны выдерживать давление в 15 и более атмосфер, высокую температуру теплоносителя – порядка 100 градусов. При этом тепловая отдача от одной секции у некоторых моделей достигает порой 200 Вт. Но при этом они небольшой массой (вес секции – обычно до 2 кг) и не требуют большого объема теплоносителя (емкость – не более 500 мл).

Алюминиевые радиаторы представлены в продаже как наборными батареями, с возможностью изменения количества секций, так и цельными изделиями, рассчитанными на определенную мощность.

Недостатки алюминиевых радиаторов:

  • Некоторые типы весьма подвержены кислородной коррозии алюминия, с высоким риском газообразования при этом. Это предъявляет особы требования к качеству теплоносителя, поэтому такие батареи обычно устанавливают в автономных системах отопления.
  • Некоторые алюминиевые радиаторы неразборной конструкции, секции которых изготавливаются по технологии экструзии, могут при определенных неблагоприятных условиях дать течь на соединениях. При этом провести ремонт – попросту невозможно, и придется менять всю батарею в целом.

Изо всех алюминиевых батарей самые качественные – изготовленные с применением анодного оксидирования металла. Этим изделиям практически не страшна кислородная коррозия.

Внешне все алюминиевые радиаторы примерно похожи, поэтому необходимо очень внимательно читать техническую документацию, делая выбор.

Биметаллические радиаторы отопления

Подобные радиаторы по своей надежности оспаривают первенство с чугунными, а по тепловой отдаче – с алюминиевыми. Причина тому заключается в их особой конструкции.

Каждая из секций состоит из двух, верхнего и нижнего, стальных горизонтальных коллекторов (поз. 1), соединенных таким же стальным вертикальным каналом (поз.2). Соединение в единую батарею производится высококачественными резьбовыми муфтами (поз. 3). Высокая теплоотдача обеспечивается наружной алюминиевой оболочкой.

Стальные внутренние трубы выполнены из металла, которые не подвержен коррозии или имеет защитное полимерное покрытие. Ну а алюминиевый теплообменник ни при каких обстоятельствах не контактирует с теплоносителем, и коррозия ему абсолютно не страшна.

Таким образом, получается сочетание высокой прочности и износоустойчивости с отличными теплотехническими показателями.

Цены на популярные радиаторы отопления

Радиаторы отопления

Такие батареи не боятся даже очень больших скачков давления, высоких температур. Они, по сути, универсальны, и подходят для любых систем отопления, правда, наилучшие эксплуатационные характеристики они все же показывают в условиях высокого давления центральной системы – для контуров с естественной циркуляцией они малопригодны.

Пожалуй, единственных их недостаток – высокая цена по сравнению с любыми другими радиаторами.

Для удобства восприятия размещена таблица, в которой приведены сравнительные характеристики радиаторов. Условные обозначения в ней:

  • ТС – трубчатые стальные;
  • Чг – чугунные;
  • Ал – алюминиевые обычные;
  • АА – алюминиевые анодированные;
  • БМ – биметаллические.
Чг ТС Ал АА БМ
Давление максимальное (атмосфер)
рабочее 6-9 6-12 10-20 15-40 35
опрессовочное 12-15 9 15-30 25-75 57
разрушения 20-25 18-25 30-50 100 75
Ограничение по рН (водородному показателю) 6,5-9 6,5-9 7-8 6,5-9 6,5-9
Подверженность коррозии под воздействием:
кислорода нет да нет нет да
блуждающих токов нет да да нет да
электролитических пар нет слабое да нет слабое
Мощность секции при h=500 мм; Dt=70 ° , Вт 160 85 175-200 216,3 до 200
Гарантия, лет 10 1 3-10 30 3-10

Видео: рекомендации по выбору радиаторов отопления

Возможно, вас заинтересует информация о том, что собой представляет

Как рассчитать нужное количество секций радиатора отопления

Понятно, что установленный в помещении радиатор (один или несколько) должен обеспечить прогрев до комфортной температуры и компенсировать неизбежные теплопотери, независимо от погоды на улице.

Базовой величиной для вычислений всегда выступает площадь или объем комнаты. Сами по себе профессиональные расчеты – весьма сложны, и учитывают очень большое число критериев. Но для бытовых нужд можно воспользоваться упрощенными методиками.

Самые простые способы расчета

Принято считать, что для создания нормальных условий в стандартном жилом помещении достаточно 100 Вт на квадратный метр пл ощади. Таким образом, следует всего лишь вычислить площадь комнаты и умножить ее на 100.

Q = S × 100

Q – требуемая теплоотдача от радиаторов отопления.

S – площадь обогреваемого помещения.

Если планируется установка неразборного радиатора, то это значение и станет ориентиром для подбора необходимой модели. В случае, когда будут устанавливаться батареи, допускающие изменение количества секций, следует провести еще один подсчет :

N = Q / Qус

N – рассчитываемое количество секций.

Qус – удельная тепловая мощность одной секции. Эта величина в обязательном порядке указывается в техническом паспорте изделия.

Как видите, расчеты эти чрезвычайно просты, и не требуют каких-либо особых знаний математики – достаточно рулетки чтобы измерить комнату и листка бумаги для вычислений. Кроме того, можно воспользоваться и таблицей, расположенной ниже – там приведены уже рассчитанные значения для комнат различной площади и определённых мощностей обогревательных секций.

Таблица секции

Однако, нужно помнить, что эти значения – для стандартной высоты потолка (2,7 м ) многоэтажки. Если высота комнаты иная, то лучше просчитать количество секций батареи, исходя из объема помещения. Для этого применяется усредненный показатель – 41 В т т епловой мощности на 1 м³ объема в панельном доме, или 34 Вт – в кирпичном.

Q = S × h × 40 (34 )

где h – высота потолка над уровнем пола.

Дальнейший расчет – ничем не отличается от представленного выше.

Подробный расчет с учетом особенностей помещения

А теперь перейдем к более серьезным расчетам . Упрощенная методика вычисления, приведенная выше, может преподнести хозяевам дома или квартиры «сюрприз». Когда установленные радиаторы не будут создавать в жилых помещениях требуемого комфортного микроклимата. И причина тому – целый перечень нюансов, которых рассмотренный метод просто не учитывает. А между тем , подобные нюансы могут иметь весьма важное значение.

Итак, за основу вновь берется площадь помещения и всё те же 100 Вт на м². Но сама формула уже выглядит несколько иначе:

Q = S × 100 × А × В × С × D × Е × F × G × H × I × J

Буквами от А до J условно обозначены коэффициенты, учитывающие особенности помещения и установки в нем радиаторов. Рассмотрим их по по рядку:

А – количество внешних стен в помещении.

Понятно, что чем выше площадь контакта помещения с улицей, то есть, чем больше в комнате внешних стен, тем выше общие теплопотери. Эту зависимость учитывает коэффициент А :

  • Одна внешняя стена – А = 1,0
  • Две внешних стены – А = 1,2
  • Три внешний стены – А = 1,3
  • Все четыре стены внешние – А = 1,4

В – ориентация помещения по сторонам света.

Максимальные теплопотери всегда в комнатах, в которые не поступает прямого солнечного света. Это, безусловно, северная сторона дома, и сюда же можно отнести восточную – лучи Солнца здесь бывают только по утрам, когда светило еще «не вышло на полную мощность».

Южная и западная стороны дома всегда прогреваются Солнцем значительно сильнее.

Отсюда – значения коэффициента В :

  • Комната выходит на север или восток – В = 1,1
  • Южная или западная комнаты – В = 1, то есть, может не учитываться.

С – коэффициент, учитывающий степень утепленности стен.

Понятно, что теплопотери из отапливаемого помещения будут зависеть от качества термоизоляции внешних стен. Значение коэффициента С принимают равным:

  • Средний уровень - стены выложены в два кирпича, или предусмотрено их поверхностное утепление другим материалом – С = 1,0
  • Внешние стены не утеплены – С = 1,27
  • Высокий уровень утепления на основе теплотехнических расчетов – С = 0,85.

D – особенности климатических условий региона.

Естественно, что нельзя равнять все базовые показатели требуемой мощности обогрева «под одну гребенку » — они зависят и от уровня зимних отрицательных температур, характерного для конкретной местности. Это учитывает коэффициент D. Для его выбора берутся средние температуры самой холодной декады января – обычно это значение несложно уточнить в местной гидрометеорологической службе.

  • — 35 ° С и ниже – D= 1,5
  • — 25÷ — 35 ° С D= 1,3
  • до – 20 ° С D= 1,1
  • не ниже – 15 ° С D= 0,9
  • не ниже – 10 ° С D= 0,7

Е – коэффициент высоты потолков помещения.

Как уже говорилось, 100 Вт/м² — это усредненное значение для стандартной высоты потолков. Если она отличается, следует ввести поправочный коэффициент Е :

  • До 2,7 м Е = 1, 0
  • 2,8 3, 0 м Е = 1, 05
  • 3,1 3, 5 м Е = 1, 1
  • 3,6 4, 0 м Е = 1,15
  • Более 4,1 м – Е = 1,2

F– коэффициент, учитывающий тип помещения, расположенного выше

Устраивать систему отопления в помещениях с холодным полом – бессмысленное занятие, и хозяева всегда в этом вопросе принимают меры. А вот тип помещения, расположенного выше, часто от них никак не зависит. А между тем, если сверху жилое или утепленное помещение, то общая потребность в тепловой энергии значительно снизится:

  • холодный чердак или неотапливаемое помещение – F= 1,0
  • утепленный чердак (в том числе – и утепленная кровля) – F= 0,9
  • отапливаемое помещение – F= 0,8

G– коэффициент учета типа установленных окон.

Различные оконные конструкции подвержены теплопотерям неодинаково. Это учитывает коэффициент G :

  • обычные деревянные рамы с двойным остеклением – G= 1,27
  • окна оснащены однокамерным стеклопакетом (2 стекла) – G= 1,0
  • однокамерный стеклопакет с аргоновым заполнением или двойной стеклопакет (3 стекла) — G= 0,85

Н – коэффициент пл ощади остекления помещения.

Общее количество теплопотерь зависит и от суммарной площади окон, установленных в помещении. Эта величина рассчитывается на основании отношения площади окон к площади помещения. В зависимости от полученного результата находим коэффициент Н :

  • Отношение менее 0,1 – Н = 0, 8
  • 0,11 ÷ 0,2 – Н = 0, 9
  • 0,21 ÷ 0,3 – Н = 1, 0
  • 0,31÷ 0,4 – Н = 1, 1
  • 0,41 ÷ 0,5 – Н = 1,2

I– коэффициент, учитывающий схему подключения радиаторов.

От того, как подключены радиаторы к трубам подачи и обратки , зависит их теплоотдача. Это тоже следует учесть при планировании установки и определения нужного количества секций:

  • а – диагональное подключение, подача сверху, обратка снизу – I = 1,0
  • б – одностороннее подключение, подача сверху, обратка снизу – I = 1,03
  • в – двустороннее подключение, и подача, и обратка снизу – I = 1,13
  • г – диагональное подключение, подача снизу, обратка сверху – I = 1,25
  • д – одностороннее подключение, подача снизу, обратка сверху – I = 1,28
  • е – одностороннее нижнее подключение обратки и подачи – I = 1,28

J– коэффициент, учитывающий степень открытости установленных радиаторов.

Многое зависит и от того, насколько установленные батареи открыты для свободного теплообмена с воздухом помещения. Имеющиеся или искусственно созданные преграды способны существенно снизить теплоотдачу радиатора. Это учитывает коэффициент J :

а – радиатор расположен открыто на стене или не прикрыт подоконником – J= 0,9

б – радиатор прикрыт сверху подоконником или полкой – J= 1,0

в – радиатор прикрыт сверху горизонтальным выступом стеновой ниши – J= 1,07

г – радиатор сверху прикрыт подоконником, а с фронтальной стороны части чно прикрыт декоративным кожухом – J= 1,12

д – радиатор полностью прикрыт декоративным кожухом– J= 1,2

⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰

Ну вот, наконец, и все. Теперь можно подставлять в формулу нужные значения и соответствующие условиям коэффициенты, и на выходе получится требуемая тепловая мощность для надежного обогрева помещения, с учетом все нюансов.

После этого останется или подобрать неразборный радиатор с нужной тепловой отдачей, или же разделить вычисленное значение на удельную тепловую мощность одной секции батареи выбранной модели.

Наверняка , многим такой подсчет покажется чрезмерно громоздким, в котором легко запутаться. Для облегчения проведения вычислений предлагаем воспользоваться специальным калькулятором – в него уже заложены все требуемые величины. Пользователю остается лишь ввести запрашиваемые исходные значения или выбрать из списков нужные позиции. Кнопка «рассчитать» сразу приведет к получению точного результата с округлением в большую сторону.

Все про стальные радиаторы отопления: расчет мощности (таблица), определение с учетом теплопотерь, процентное увеличение и вычисление по площади помещения, а также как подобрать панельные батареи.

От того, насколько правильно и грамотно был произведен расчет мощности стального радиатора, настолько же можно ожидать от него тепла.

В данном случае нужно учесть, чтобы совпали технические параметры отопительной системы и обогревателя.

Расчет по площади помещения

Чтобы теплоотдача стальных радиаторов была максимальной, можно воспользоваться расчетом их мощностей, исходя из размера комнаты.

Если взять в качестве примера помещение с площадью 15 м2 и потолками высотой 3 м, то, высчитав его объем (15х3=45) и умножив на количество требуемых Вт (по СНиП – 41 Вт/м3 для панельных домов и 34 Вт/ м3 для кирпичных), то получится, что потребляемая мощность равна 1845 Вт (панельное здание) или 1530 Вт (кирпичное).

После этого достаточно проследить, чтобы расчет мощности стальных радиаторов отопления (можно свериться с таблицей, которую предоставляет производитель) соответствовал полученным параметрам. Например, при покупке обогревателя типа 22 нужно отдать предпочтение конструкции, имеющей высоту 500 мм, а длину 900 мм, которой свойственна мощность 1851 Вт.

Если предстоит замена старых батарей на новые или переустройство всей отопительной системы, то следует тщательно ознакомиться с требованиями СНиП. Это избавит от возможных недочетов и нарушений при монтажных работах.

Стальные радиаторы отопления: расчет мощности (таблица)

Определение мощности с учетом теплопотерь

Кроме показателей, связанных с материалом, из которого построен многоквартирный дом и указанных в СНиП, в расчетах можно использовать температурные параметры воздуха на улице. Этот способ основан на учете теплопотерь в помещении.

Для каждой климатической зоны определен коэффициент в соответствии с холодными температурами:

  • при -10 ° C – 0.7;
  • — 15 ° C – 0.9;
  • при — 20 ° C – 1.1;
  • — 25 ° C – 1.3;
  • до — 30 ° C – 1.5.

Теплоотдача стальных радиаторов отопления (таблица предоставляется фирмой-производителем) должна быть определена с учетом количества наружных стен. Так если в комнате она одна, то результат, полученный при расчете стальных радиаторов отопления по площади, нужно умножить на коэффициент 1.1, если их две или три, то он равен 1.2 или 1.3.

Например, если температура за окном – 25 ° C, то при расчете стального радиатора типа 22 и требуемой мощностью 1845 Вт (панельный дом) в помещении, где 2 наружные стены, получится следующий результат:

  • 1845х1.2х1.3 = 2878.2 Вт. Этому показателю соответствуют панельные конструкции 22-го типа 500 мм высоты и 1400 мм длины, имеющие мощность 2880 Вт.

Так подбираются панельные радиаторы отопления (расчет по площади с учетом коэффициента теплопотерь). Подобный подход к выбору мощности панельной батареи обеспечит максимально эффективную ее работу.

Чтобы было легче произвести расчет стальных радиаторов отопления по площади, калькулятор онлайн сделает это в считанные секунды, достаточно внести в него необходимые параметры.

Процентное увеличение мощности

Можно учитывать теплопотери не только по стенам, но и окнам.

Например, прежде чем выбирать стальной радиатор отопления, расчет по площади нужно увеличить на определенное количество процентов в зависимости от количества окон в помещении:


Учет подобных нюансов перед установкой панельных батарей из стали позволяет правильно выбрать нужную модель. Это сэкономит средства на ее эксплуатации при максимальной теплоотдаче.

Поэтому не следует думать только о том, как подобрать стальные радиаторы отопления по площади помещения, но и учитывать его теплопотери и даже расположение окон. Такой комплексный подход позволяет учесть все факторы, влияющие на температуру в квартире или доме.

Знать о том, как рассчитать количество радиаторов на комнату, нужно не только профессионалам в области проектировки отопительных систем. Даже простая замена батарей в доме невозможна без точного расчета и подбора достаточно эффективных устройств, так что информация, изложенная ниже, будет востребована каждому из нас.

Зачем нужен точный расчет?

Инструкция по вычислению точных параметров отопительных устройств, приведенная в этой статье, весьма полезна:

  • Во-первых, от мощности обогрева зависит комфорт в нашем доме. Если мы установим слишком слабые радиаторы, то в холодное время года они не смогут справляться с возрастающей нагрузкой, и потому параметры микроклимата будут далеки от оптимальных.

  • Во-вторых, цена качественного весьма высока, и потому переплачивать за установку ненужных конструкций тоже не следует. Зная, как рассчитать количество радиаторов отопления на комнату, мы сможем сократить наши расходы, купив ровно столько батарей, сколько нам требуется.
  • Наконец, предварительный просчет позволит нам спланировать наши затраты еще на этапе планирования. Зная, какое количество тепла потребуется для обогрева помещений, мы сможем выбрать подходящий тип отопительной системы, начиная от котла и заканчивая материалом, из которого будут изготовлены секции батарей в доме.

Технология вычислений мощности

Простая методика

Совет!
Округление необходимо, поскольку запас по мощности точно лишним не будет, а вот недостаток придется компенсировать с большими дополнительными затратами.

Боле точный способ

Есть и еще один вариант решения задачи о том, как рассчитать мощность радиатора на комнату своими руками.

Для этого нам нужно вычислить объем комнаты:

  • Площадь помещения умножаем на его высоту, получая искомую величину в кубометрах.
  • Объем умножаем на нормативный коэффициент, который для европейской части РФ равен 41 Вт.
  • Далее поступаем как в предыдущем случае: полученное значение делим на теплоотдачу секции или панельного радиатора, а затем округляем результат в большую сторону.

Как видите, метод не намного сложнее предыдущего. Однако с его помощью можно максимально точно вычислить, сколько тепла потребляет помещения, и какое количество батарей необходимо для его обогрева.

Пример расчета

В этом разделе мы на простом примере продемонстрируем, как рассчитать мощность радиатора отопления на комнату:

  • Итак, допустим, у нас есть помещение длиной 5м, шириной 4 м с потолками высотой 2,7 м.
  • Вычисляем объем: 5 х 4 х 2,7 = 54м3.
  • Далее рассчитываем, сколько тепла требуется для эффективного обогрева: 54 х 41 = 2214 Вт.
  • Затем выбираем модель обогревателя. Мы выполним вычисление для биметаллической конструкции Sira RS500 с теплоотдачей одной секции, равной 199 Вт.

Обратите внимание!
Перед тем как рассчитать стальные радиаторы на комнату, нужно внимательно изучить паспорт изделия.
Очень часто у таких устройств теплоотдача указывается за всю панель целиком, в то время как у чугунных, алюминиевых и биметаллических конструкций чаще применяется посекционный расчет.

  • Потребность в тепле делим на теплоотдачу секции: 2214 / 199 = 11,1. Для получения запаса по мощность округлим до 12 – именно столько ребер батареи нам нужно установить, чтобы обеспечить комфортный микроклимат в комнате.

Габаритные размеры

Как правило, установка одного большого устройства менее затратна, чем двух изделий поменьше, однако здесь действуют определённые ограничения, связанные с габаритами простенков:

  • Так, нельзя устанавливать батарею вплотную к полу . Минимальный зазор должен составлять около 80 – 120 мм.
  • Отступ от нижнего края подоконника также важен . Эта величина не должна быть меньше 60 – 120 мм, иначе тепло просто не будет поступать к окну, и на стекле будет собираться конденсат.
  • Существуют и ограничения по ширине . Если радиатор монтируется внутри подоконной ниши, то по бокам должно оставаться минимум по 150 мм свободного пространства.

Одна из главных целей подготовительных мероприятий перед монтажом системы отопления – определить, сколько нагревательных приборов потребуется в каждое из помещений, и какую мощность они должны иметь. Перед тем, как рассчитать количество радиаторов, рекомендуется ознакомиться с основными методиками этой процедуры.

Расчет секций батарей отопления по площади

Это самый простой тип расчета количества секций радиаторов отопления, где необходимый на обогрев помещения объем тепла определяется с ориентиром на квадратные метры жилища.

  • Средний климатический пояс на обогрев 1 м2 жилья требует 60-100 Вт.
  • Для северных регионов это норма соответствует 150-200 Вт.

Имея на руках эти цифры, проводится подсчет необходимого тепла. К примеру, для квартир средней полосы обогрев комнаты площадью 15 м2 потребует 1500 Вт тепла (15х100). При этом следует понимать, что речь идет об усредненных нормах, поэтому лучше ориентироваться на максимальные показатели для конкретного региона. Для местностей с очень мягкими зимами допускается использование коэффициента 60 Вт.


Делая запас по мощности, желательно не переусердствовать, так как это потребует использования большого числа обогревающих приборов. Следовательно, объем необходимого теплоносителя также возрастет. Для обитателей многоквартирных домов с центральным отоплением этот вопрос не является принципиальным. Жильцам же частного сектора приходится увеличивать затраты на подогрев теплоносителя, на фоне возрастания инерционности всего контура. Это предполагает необходимость тщательного проведения расчета радиаторов отопления по площади.

После определения всего необходимого на обогрев тепла, появляется возможность выяснить число секций. Сопроводительная документация на любой нагревательный прибор содержит информацию о выделяемом им тепле. Для подсчета секций общий объем необходимого тепла нужно разделить на мощность батареи. Чтобы увидеть, как это происходит, можно обратится к уже приведенному выше примеру, где в результате проведенных подсчетов был определен необходимый объем для обогрева комнаты 15 м2 – 1500 Вт.

Возьмем за мощность одной секции 160 Вт: выходит, что число секций будет равняться 1500:160 = 9,375. В какую сторону округлять – это выбор самого пользователя. Обычно в учет берется наличие косвенных источников обогрева комнаты и степень ее утепления. К примеру, в кухне воздух обогревается также бытовыми приборами во время готовки, поэтому там округлять можно в сторону уменьшения.

Способ расчета секций батарей отопления по площади характеризуется значительной простотой, однако из поля зрения пропадет ряд серьезных факторов. К ним можно отнести высоту помещений, количество дверных и оконных проемов, уровень утепления стен и пр. Поэтому способ расчета количества секций радиатора по СНиП можно назвать приблизительным: чтобы получить результат без погрешностей, не обойтись без поправок.

Объем комнаты

Этот подход расчета предполагает учет также высоты потолков, т.к. обогреву подлежит весь объем воздуха в жилище.

Методика вычисления используется очень схожая - вначале определяют объем, после чего руководствуются следующими нормами:

  • Для панельных домов нагревание 1 м3 воздуха необходим 41 Вт.
  • Кирпичный дом требует 34 Вт/м3.

Для наглядности можно провести расчет батарей отопления того же помещения в 15м2 для сопоставления результатов. Высоту жилища возьмем 2,7 м: в итоге объем получится 15х2,7 = 40,5.


Подсчет для различных зданий:

  • Панельный дом. Для определения необходимого на обогрев тепла 40,5м3х41 Вт = 1660,5 Вт. Для расчета требуемого числа секций 1660,5:170 = 9,76 (10 шт.).
  • Кирпичный дом. Общий объем тепла – 40,5м3х34 Вт = 1377 Вт. Подсчет радиаторов – 1377:170 = 8,1 (8 шт.).

Получается, что для отопления кирпичного дома секций потребуется значительно меньше. Когда проводился расчет секций радиатора на площадь, результат получился усредненный – 9 шт.

Корректируем показатели

Для более успешного решения вопроса, как рассчитать количество радиаторов на комнату, в учет необходимо взять некоторые дополнительные факторы, способствующие увеличению или уменьшению теплопотерь. Значительное влияние имеет материал изготовления стен и уровень их теплоизоляции. Немалое значение играет также количество и размер окон, вид используемого для них остекления, наружные стены и т.д. Для упрощения процедуры, как рассчитать радиатор на комнату, вводятся специальные коэффициенты.

Окна

Через оконные проемы теряется примерно 15-35% тепла: на это влияют размеры окон и степень их утепления. Это объясняет наличие двух коэффициентов.

Соотношение площади окна и пола:

  • 10% - 0,8
  • 20% - 0,9
  • 30% - 1,0
  • 40% - 1,1
  • 50% - 1,2


По типу остекления:

  • 3-камерный стеклопакет или 2-камерный стеклопакеты с аргоном - 0,85;
  • стандартный 2-камерный стеклопакет - 1,0;
  • простые двойные рамы - 1,27.

Стены и крыша

Выполняя точный расчет батарей отопления на площадь, не обойтись без учета материала стен, степени их термоизоляции. Для этого также имеются коэффициенты.

Уровень утепления:

  • За норму берутся кирпичные стены в два кирпича - 1,0.
  • Небольшой (отсутствует) - 1,27.
  • Хороший - 0,8.

Внешние стены:

  • Не имеются - без потерь, коэффициент 1,0.
  • 1 стена - 1,1.
  • 2 стены - 1,2.
  • 3 стены- 1,3.

Уровень теплопотерь тесно связан с наличием или отсутствием жилой мансарды или второго этажа. Если такое помещение имеется, коэффициент будет уменьшающим 0,7 (для чердака с обогревом– 0,9). Как данность предполагается, что степень влияния на температуру помещения нежилого чердака – нейтральная (коэффициент 1,0).


В тех ситуациях, когда при расчете секций радиаторов отопления по площади приходится иметь дело с нестандартной высотой потолка (стандартом считается 2,7 м), применяются уменьшающие или увеличивающие коэффициенты. Для их получения имеющаяся высота делится на стандартную 2,7 м. Возьмем пример с высотой потолка 3 м: 3,0м/2,7м=1,1. Далее показатель, полученный при расчете секций радиаторов по площади помещения, возводят в степень 1,1.

При определении вышеперечисленных норм и коэффициентов за ориентир брались квартиры. Чтобы выяснить уровень теплопотерь в частном доме со стороны кровли и подвала, к результату добавляют еще 50%. Таким образом, этот коэффициент будет равняться 1,5.

Климат

Существует также корректировка по средним зимним температурам:

  • 10 и выше градусов - 0,7
  • -15 градусов - 0,9
  • -20 градусов - 1,1
  • -25 градусов - 1,3
  • -30 градусов- 1,5

После внесения всех возможных корректировок в расчет алюминиевых радиаторов по площади получается более объективный результат. Однако приведенный выше перечень факторов будет не полным без упоминания критериев, влияющих на мощность обогревания.

Тип радиатора

Если систему отопления будет комплектоваться секционными радиаторами, в которых осевое расстояние имеет высоту 50 см, то расчет секций радиаторов отопления особых затруднений не вызовет. Как правило, солидные производители имеют собственные сайты с указанием техническим данных (включая тепловую мощность) всех моделей. Иногда вместо мощности может указываться расход теплоносителя: перевести его в мощность очень просто, ведь потребление теплоносителя 1л/мин соответствует примерно 1 кВт. Чтобы определить осевую дистанцию, необходимо замерить расстояние между центрами трубы подачи до обратки.

Для облегчения задачи множество сайтов оснащены специальной программой по калькуляции. Все, что необходимо для расчета батарей на комнату – внести ее параметры в указанные строки. Нажав поле «Ввод», на выходе мгновенно высвечивается число секций выбранной модели. Определяясь с типом обогревательного прибора, берут во внимание разницу тепловой мощности радиатора отопления по площади, в зависимости от материала изготовления (при прочих равных условиях).


Облегчит понимание сути вопроса простейший пример расчета секций биметаллического радиатора, где в учет берется только площадь помещения. Определяясь с количеством биметаллических нагревательных элементов со стандартной межосевой дистанцией в 50 см, за отправную точку берут возможность обогревания одной секцией 1,8 м2 жилища. В таком случае для комнаты 15 м2 потребуется 15:1,8 = 8,3 шт. После округления получаем 8 шт. Схожим образом проводится расчет батарей из чугуна и стали.

Для этого потребуются следующие коэффициенты:

  • Для биметаллических радиаторов - 1,8 м2.
  • Для алюминиевых - 1,9-2,0 м2.
  • Для чугунных - 1,4-1,5 м2.

Эти параметры подходят для стандартной межосевой дистанции 50 см. В настоящее время выпускаются радиаторы, где это расстояние может колебаться от 20 до 60 см. Встречаются даже т.н. «бордюрные» модели высотой менее 20 см. Понятное дело, что мощность этих батарей будет другой, что потребует внесения определенных корректив. Иногда эта информация указывается в сопроводительной документации, в других же случаях потребуется самостоятельный подсчет.

Учитывая то, что площадь нагревательной поверхности напрямую влияет на тепловую мощность прибора, несложно догадаться, что по мере уменьшения высоты радиатора этот показатель будет падать. Поэтому корректирующий коэффициент определяется путем соотношения высоты выбранного изделия со стандартом 50 см.

Для примера рассчитаем алюминиевый радиатор. Для помещения в 15 м2 расчет секций радиаторов отопления по площади помещения выдает результат 15:2 = 7,5 шт. (округляем до 8 шт.) Намечена была эксплуатация маломерных приборов высотой 40 см. Вначале нужно найти соотношение 50:40 = 1,25. После корректировки количества секций получается результат 8х1,25 = 10 шт.

Учет режима системы отопления

Сопроводительная документация на радиатор обычно содержит информацию о его максимальной мощности. Если используется высокотемпературный режим эксплуатации, то в трубе подачи теплоноситель нагревается до +90 градусов, а в обратке - +70 градусов (маркируется 90/70). Температура жилища при этом должна быть +20 градусов. Подобный режим функционирования современными системами обогрева практически не используется. Чаще встречается средняя (75/65/20) или низкая (55/45/20) мощность. Этот факт требует корректировки расчета мощности батарей отопления по площади.

Чтобы определить режим работы контура, в учет берется показатель температурного напора системы: так называют разницу температуры воздуха и поверхности радиатора. За температуру отопительного прибора принимают среднее арифметическое между показателями подачи и обратки.


Для большего понимания рассчитаем чугунные батареи со стандартными секциями в 50 см в режиме высокой и низкой температуры. Площадь комнаты прежняя – 15 м2. Обогрев одной чугунной секции в высокотемпературном режиме обеспечивается для 1,5 м2, поэтому общее число секций будет равняться 15:1,5 = 10. В контуре запланировано применение низкотемпературного режима.

Определения температурного напора каждого из режимов:

  • Высокотемпературный - 90/70/20- (90+70):20 =60 градусов;
  • Низкотемпературный - 55/45/20 - (55+45):2-20 = 30 градусов.

Получается так, что для обеспечения нормального обогрева помещения в режиме низких температур число радиаторных секций нужно удвоить. В нашем случае для комнаты 15 м2 необходимо 20 секций: это предполагает наличие довольно широкой чугунной батареи. Именно поэтому приборы из чугуна не рекомендуется использовать в низкотемпературных системах.

Во внимание может быть взята и желаемая температура воздуха. Если за цель ставится поднять ее с 20 до 25 градусов, осуществляют расчет теплового напора с этой поправкой, высчитывая нужный коэффициент. Проведем расчет мощности батарей отопления по площади все того же чугунного радиатора, введя корректировку в параметры (90/70/25). Вычисление температурного напора в этой ситуации будет выглядеть так: (90+70):2-25=55 градусов. Теперь высчитываем соотношение 60:55=1,1. Чтобы обеспечить температурный режим 25 градусов, необходимо 11 шт х1,1=12,1 радиаторов.

Влияние типа и места установки

Наряду с уже упомянутыми факторами, степень теплоотдачи отопительного прибора зависит также от того, каким образом он был подключен. Самое эффективной считается коммутация по диагонали с подачей сверху, которая сводит уровень теплопотерь практически к нулю. Наибольшие потери тепловой энергии демонстрирует боковое подключение – почти 22%. Для остальных типов установки характерна средняя эффективность.


Способствуют уменьшению фактической мощности батареи и различные заграждающие элементы: к примеру, нависающих сверху подоконник снижает теплоотдачу почти на 8%. Если полного перекрывания радиатора не происходит, потери снижаются до 3-5%. Сетчатые декоративные экраны частичного покрытия провоцируют падения теплоотдачи на уровне нависающего подоконника (7-8%). Если батарею полностью закрыть таким экраном, ее эффективность снизится на 20-25%.

Как рассчитать количество радиаторов для однотрубного контура

Следует учесть тот факт, что все вышесказанное относится к двухтрубным отопительным схемам, предполагающим подачу на каждый из радиаторов теплоносителя одинаковой температуры. Рассчитать секции радиатора отопления в однотрубной системе на порядок сложнее, ведь каждая следующая батарея по ходу движения теплоносителя обогревается на порядок меньше. Поэтому расчет для однотрубного контура предполагает постоянный пересмотр температуры: такая процедура занимает много времени и усилий.

В качестве облегчения процедуры используется такой прием, когда расчет отопления на квадратный метр проводится, как для двухтрубной системы, а потом с учетом падения тепловой мощности наращивают секции для увеличения теплоотдачи контура в общем. Для примера возьмем схему однотрубного типа, которая имеет 6 радиаторов. После определения числа секций, как для двухтрубной сети, вносим определенные корректировки.

Первый из отопительных приборов по ходу движения теплоносителя обеспечивается полностью нагретым теплоносителем, поэтому его можно не пересчитывать. Температура подачи на второй по счету прибор уже меньшая, поэтому нужно определить степень снижения мощности, увеличив на полученное значение число секций: 15кВт-3кВт=12кВт (процентное соотношение уменьшения температуры составляет 20%). Итак, для восполнения потерь тепла понадобятся добавочные секции - если вначале их нужно было 8шт, то после добавления 20% получаем конечное число - 9 или 10 шт.

При выборе, в какую сторону округлить, учитывают функциональное назначение помещение. Если речь идет о спальне или детской, округление проводится в большую сторону. При расчете гостиной или кухни округлять лучше в меньшую сторону. Свою долю влияние имеет также то, на какой стороне расположена комната – южной или северной (северные помещения обычно округляются в большую сторону, а южные – в меньшую).

Данный метод подсчета не является совершенным, так как предполагает увеличение последнего радиатора на линии до поистине гигантских размеров. Следует также понимать, что удельная теплоемкость подаваемого теплоносителя почти никогда не равняется ее мощности. Из-за этого котлы для оснащения однотрубных контуров выбираются с некоторым запасом. Оптимизируют ситуацию наличие запорной арматуры и коммутация батарей через байпас: благодаря этому достигается возможность регулировки теплоотдачи, что несколько компенсирует снижение температуры теплоносителя. Однако от необходимости увеличивать размеры радиаторов и количество его секций по мере удаления от котла при использовании однотрубной схемы даже эти приемы не освобождают.

Чтобы решить задачу, как рассчитать радиаторы отопления по площади, много времени и сил не понадобится. Другое дело – провести корректировку полученного результата, взяв во внимание все характеристики жилища, его размеры, способ коммутации и дислокацию радиаторов: эта процедура достаточно трудоемкая и длительная. Однако именно таким образом можно получить максимально точные параметры для отопительной системы, что обеспечит тепло и уют помещений.


Правильный расчёт секций радиаторов отопления - довольно важная задача для каждого домовладельца. Если будет использовано недостаточное количество секций, помещение не прогреется во время зимних холодов, а приобретение и эксплуатация слишком больших радиаторов повлечёт неоправданно высокие расходы на отопление.

Для стандартных помещений можно воспользоваться самыми простыми расчётами, однако иногда возникает необходимость учесть различные нюансы, чтобы получить максимально точный результат.

Для выполнения расчётов нужно знать определённые параметры

  • Габариты помещения, которое необходимо отопить;
  • Вид батареи, материал ее изготовления;
  • Мощность каждой секции или цельной батареи в зависимости от ее вида;
  • Максимально допустимое количество секций ;

По материалу изготовления радиаторы разделяются так:

  • Стальные. Эти радиаторы имеют тонкие стенки и весьма элегантный дизайн, но популярностью они не пользуются из-за многочисленных недостатков. К ним можно отнести малую теплоемкость, быстрый нагрев и остывание. При гидравлических ударах в местах соединений часто возникает течь, а дешевые модели быстро ржавеют и работают недолго. Обычно бывают цельные, не разделяются на секции, мощность стальных батарей указана в паспорте.
  • Чугунные радиаторы знакомы каждому человеку с детства, это традиционный материал, из которого делают долговечные и обладающие прекрасными техническими характеристиками батареи. Каждая секция чугунной гармошки советских времен выдавала теплоотдачу 160 Вт. Это сборная конструкция, количество секций в ней ничем не ограничено. Могут быть как современного, так и винтажного дизайна. Чугун прекрасно держит тепло, не подвержен коррозии, абразивному износу, совместимы с любыми теплоносителями.
  • Алюминиевые батареи легки, современны, имеют высокую теплоотдачу, благодаря своим достоинствам приобретают все большую популярность у покупателей. Теплоотдача одной секции доходит до 200 Вт, выпускаются они и цельными конструкциями. Из минусов можно отметить кислородную коррозию, но эту проблему решают при помощи анодного оксидирования металла.
  • Биметаллические радиаторы состоят из внутренних коллекторов и внешнего теплообменника. Внутренняя часть сделана из стали, а внешняя – из алюминия. Высокие показатели теплоотдачи, до 200 Вт, сочетаются с прекрасной износостойкостью. Относительный минус этих батарей – высокая цена по сравнению с другими видами.

Материалы радиаторов отличаются своими характеристиками, что влияет на расчёты

Как рассчитать количество секций радиаторов отопления для комнаты

Произвести расчёты можно несколькими способы, в каждом из которых используются определённые параметры.

По площади помещения

Предварительный расчёт можно сделать, ориентируясь на площадь помещения, для которого покупаются радиаторы. Это очень простое вычисление, которое подходит для комнат с низкими потолками (2,40-2,60 м). Согласно строительным нормам для обогрева понадобится 100 Вт тепловой мощности на каждый квадратный метр помещения.

Вычисляем количество тепла, которое понадобится для всей комнаты. Для этого площадь умножаем на 100 Вт, т. е. для комнаты в 20 кв. м расчётная тепловая мощность составит 2 000 Вт (20 кв. м*100 Вт) или 2 кВт.

Правильный расчёт радиаторов отопления необходим, чтобы гарантировать достаточное количество тепла в доме

Этот результат нужно разделить на теплоотдачу одной секции, указанную производителем. Например, если она равна 170 Вт, то в нашем случае необходимое количество секций радиатора будет составлять: 2 000 Вт/170 Вт = 11,76, т. е. 12, поскольку результат следует округлить до целого числа. Округление обычно осуществляется в сторону увеличения, однако для помещений, в которых теплопотери ниже среднего, например, для кухни, можно округлять в меньшую сторону.

Обязательно следует учесть возможные теплопотери в зависимости от конкретной ситуации. Разумеется, комната с балконом или расположенная в углу здания теряет тепло быстрее. В этом случае следует увеличить значение расчётной тепловой мощности для комнаты на 20%. Примерно на 15-20% стоит повысить расчеты, если планируется скрыть радиаторы за экраном или монтировать их в нишу.

"); } else { // jQuery("

").dialog(); $("#z-result_calculator").append("

Поля заполнены неправильно. Пожалуйста, заполните все поля верно для расчета количества секций

По объёму

Более точные данные можно получить, если сделать расчёт секций радиаторов отопления с учётом высоты потолка, т. е. по объёму помещения. Принцип здесь примерно такой же, как и в предыдущем случае. Сначала вычисляется общая потребность в тепле, затем рассчитывают количество секций радиаторов.

Если радиатор будет скрыт экраном, нужно увеличить потребность помещения в тепловой энергии на 15-20%

Согласно рекомендациям СНИП на обогрев каждого кубического метра жилого помещения в панельном доме необходим 41 Вт тепловой мощности. Умножив площадь комнаты на высоту потолка, получаем общий объём, который умножаем на это нормативное значение. Для квартир с современными стеклопакетами и наружным утеплением понадобится меньше тепла, всего 34 Вт на кубический метр.

Например, рассчитаем необходимое количество тепла для комнаты площадью 20 кв. м с потолком высотой 3 метра. Объём помещения составит 60 куб. м (20 кв. м*3 м). Расчетная тепловая мощность в этом случае будет равна 2 460 Вт (60 куб. м*41 Вт).

А как рассчитать количество радиаторов отопления? Для этого нужно разделить полученные данные на указанную производителем теплоотдачу одной секции. Если взять, как и в предыдущем примере, 170 Вт, то для комнаты будет нужно: 2 460 Вт / 170 Вт = 14,47, т. е. 15 секций радиатора.

Производители стремятся указывать завышенные показатели теплоотдачи своей продукции, предполагая, что температура теплоносителя в системе будет максимальной. В реальных условиях это требование соблюдается редко, поэтому следует ориентироваться на минимальные показатели теплоотдачи одной секции, которые отражены в паспорте изделия. Это сделает расчёты более реалистичными и точными.

Если помещение нестандартное

К сожалению, далеко не каждая квартира может считаться стандартной. Ещё в большей степени это относится к частным жилым домам. Как же произвести расчёты с учётом индивидуальных условий их эксплуатации? Для это понадобится учесть множество различных факторов.

При расчёте количества секций отопления нужно учесть высоту потолка, количество и размеры окон, наличие утепления стен и т. п.

Особенность этого метода состоит в том, что при вычислении необходимого количества тепла используется ряд коэффициентов, учитывающих особенности конкретного помещения, способные повлиять на его способность сохранять или отдавать тепловую энергию.

Формула для расчетов выглядит так:

КТ=100 Вт/кв. м* П*К1*К2*К3*К4*К5*К6*К7 , где

КТ - количество тепла, необходимого для конкретного помещения;
П - площадь комнаты, кв. м;
К1 - коэффициент, учитывающий остекление оконных проемов:

  • для окон с обычным двойным остеклением - 1,27;
  • для окон с двойным стеклопакетом - 1,0;
  • для окон с тройным стеклопакетом - 0,85.

К2 - коэффициент теплоизоляции стен:

  • низкая степень теплоизоляции - 1,27;
  • хорошая теплоизоляция (кладка в два кирпича или слой утеплителя) - 1,0;
  • высокая степень теплоизоляции - 0,85.

К3 - соотношение площади окон и пола в помещении:

  • 50% - 1,2;
  • 40% - 1,1;
  • 30% - 1,0;
  • 20% - 0,9;
  • 10% - 0,8.

К4 - коэффициент, позволяющий учесть среднюю температуру воздуха в самую холодную неделю года:

  • для -35 градусов - 1,5;
  • для -25 градусов - 1,3;
  • для -20 градусов - 1,1;
  • для -15 градусов - 0,9;
  • для -10 градусов - 0,7.

К5 - корректирует потребность в тепле с учетом количества наружных стен:

  • одна стена- 1,1;
  • две стены- 1,2;
  • три стены- 1,3;
  • четыре стены- 1,4.

К6 - учет типа помещения, которое расположено выше:

  • холодный чердак - 1,0;
  • отапливаемый чердак - 0,9;
  • отапливаемое жилое помещение - 0,8

К7 - коэффициент, учитывающий высоту потолков:

  • при 2,5 м - 1,0;
  • при 3,0 м - 1,05;
  • при 3,5 м - 1,1;
  • при 4,0 м - 1,15;
  • при 4,5 м - 1,2.

Остается полученный результат разделить на значение теплоотдачи одной секции радиатора и полученный результат округлить до целого числа.

Мнение эксперта

Виктор Каплоухий

Благодаря разносторонним увлечениям пишу на разные темы, но самые любимые - техника, технологии и строительство.

При установке новых радиаторов отопления можно ориентироваться на то, насколько эффективной была старая система отопления. Если её работа вас устраивала, значит, теплоотдача была оптимальной – вот на эти данные как раз и следует опираться в расчетах. Прежде всего, необходимо найти в Сети значение тепловой эффективности одной секции радиатора, который требуется заменить. Умножив найденное значение на количество ячеек, из которых состояла использовавшаяся батарея, получают данные о количестве тепловой энергии, которого было достаточно для комфортного проживания. Достаточно разделить полученный результат на теплоотдачу новой секции (эта информация указывается в техническом паспорте на изделие), и вы получите точную информацию о том, сколько ячеек понадобится для монтажа радиатора с такими же показателями тепловой эффективности. Если же раньше отопление не справлялось с обогревом помещения, или наоборот, приходилось открывать окна из-за постоянной жары, то теплоотдачу нового радиатора корректируют, добавляя или уменьшая количество секций.

Например, ранее у вас стояла распространенная чугунная батарея МС-140 из 8 секций, которая радовала своим теплом, но не устраивала с эстетической стороны. Отдавая дань моде, вы решили заменить ее на брендовый биметаллический радиатор, собранный из отдельных секций с теплоотдачей 200 Вт каждая. Паспортная мощность отслужившего теплового прибора составляет 160 Вт, однако со временем на его стенках появились отложения, которые снижают теплопередачу на 10-15%. Следовательно, реальная теплопередача одной секции старого радиатора составляет около 140 Вт, а его общая тепловая мощность – 140 * 8 = 1120 Вт. Разделим это число на теплоотдачу одной биметаллической ячейки и получим количество секций нового радиатора: 1120 / 200 = 5.6 шт. Как вы сами можете видеть, для того, чтобы оставить теплоотдачу системы на прежнем уровне, будет достаточно биметаллического радиатора из 6 секций.

Как учитывать эффективную мощность

Определяя параметры отопительной системы или отдельного ее контура, не следует сбрасывать со счетов один из важнейших параметров, а именно тепловой напор. Нередко бывает так, что и расчёты выполнены правильно, и котёл греет хорошо, а с теплом в доме как-то не складывается. Одной из причин уменьшения тепловой эффективности может являться температурный режим теплоносителя. Всё дело в том, что большинство производителей указывают величину мощности для напора в 60 °С, который имеет место быть в высокотемпературных системах с температурой теплоносителя 80-90 °С. На практике же нередко оказывается, что температура в контурах отопления находится в пределах 40-70 °С, а значит, значение температурного напора не поднимается выше 30-50 °С. По этой причине полученные в предыдущих разделах значения теплоотдачи следует умножить на реальный напор, а затем полученное число разделить на значение, указанное производителем в техпаспорте. Разумеется, полученная в результате этих расчетов цифра будет ниже той, которая была получена при вычислении по приведенным выше формулам.

Остается вычислить реальный температурный напор. Его можно найти в таблицах на просторах Сети, или же рассчитать самостоятельно по формуле ΔT = ½ х (Тн + Тк) – Твн). В ней Тн – начальная температура воды на входе в батарею, Тк – конечная температура воды на выходе из радиатора, Твн – температура внешней среды. Если подставить в эту формулу значения Тн = 90 °С (высокотемпературная система отопления, о которой упоминалось выше), Тк = 70 °С и Твн = 20 °С (комнатная температура), то нетрудно понять, почему производитель ориентируется именно на это значение термонапора. Подставив данные числа в формулу для ΔT, мы как раз и получим «стандартное» значение 60 °С.

Учитывая не паспортную, а реальную мощность теплового оборудования, можно рассчитать параметры системы с допустимой погрешностью. Все, что осталось сделать – это внести поправку в 10-15 % на случай аномально низких температур и предусмотреть в конструкции отопительной системы возможность ручной или автоматической регулировки. В первом случае специалисты рекомендуют поставить шаровые краны на байпас и ветку подачи теплоносителя в радиатор, а во втором – установить на радиаторы термостатические головки. Они позволят установить наиболее комфортную температуру в каждой комнате, не выпуская тепло на улицу.

Как корректировать результаты расчётов

При расчёте количества секций необходимо учесть и потери тепла. В доме тепло может уходить в довольно значительном количестве через стены и примыкания, пол и подвал, окна, кровлю, систему естественной вентиляции.

Причём можно и сэкономить, если утеплить откосы окон и дверей или лоджию, убрав по 1-2 секции, полотенцесушители и плита в кухне также позволяют убрать одну секцию радиатора. Использование камина и системы теплых полов, правильное утепление стен и пола сведет теплопотери к минимуму и также позволит уменьшить размер батареи.

Теплопотери обязательно нужно учесть при расчётах

Количество секций может меняться в зависимости от режима работы отопительной системы, а также от места расположения батарей и подключения системы в отопительный контур.

В частных домах используется автономное отопление, эта система эффективнее централизованной, которая применяется в многоквартирных домах.

Способ подключения радиаторов также влияет на показатели теплоотдачи. Диагональный способ, когда подача воды происходит сверху, считается самым экономичным, а боковое подключение создает потери 22%.

Количество секций может зависеть от режима системы отопления и способа подключения радиаторов

Для однотрубных систем конечный результат также подлежит коррекции. Если двухтрубные радиаторы получают теплоноситель одной температуры, то однотрубная система работает по-другому, и каждая последующая секция получает остывшую воду. В таком случае сначала делают расчёт для двухтрубной системы, а топом увеличивают количество секций с учетом тепловых потерь.

Схема расчёта однотрубной системы отопления представлена ниже.

В случае с однотрубной системой следующие друг за другом секции получают остывшую воду

Если на входе мы имеем 15 кВт, то на выходе остается 12 кВт, значит потеряно 3 кВт.

Для комнаты с шестью батареями потери составят в среднем около 20%, что создаст необходимость добавления двух секций на батарею. Последняя батарея при таком расчёте должна быть огромных размеров, для решения проблемы применяют монтаж запорной арматуры и подключение через байпас для регулировки теплоотдачи.

Некоторые производители предлагают более простой способ получить ответ. На их сайтах можно найти удобный калькулятор, специально предназначенный для того чтобы сделать данные вычисления. Чтобы воспользоваться программой, нужно ввести необходимые значения в соответствующие поля, после чего будет выдан точный результат. Или же можно воспользоваться специальной программой.

Такой расчёт количества радиаторов отопления включает практически все нюансы и базируется на довольно точном определении потребности помещения в тепловой энергии.

Корректировки позволяют сэкономить на покупке лишних секций и оплате счетов за отопление, обеспечат на долгие годы экономичную и эффективную работу системы отопления, а также позволяют создать комфортную и уютную атмосферу тепла в доме или квартире.