Схема расположения магнитов при электромагнитной левитации. Магнитная левитация на постоянных магнитах: идеи и опыты

Принцип работы: В данной схеме сила притяжения генерируется между электромагнитом и постоянным магнитом. Равновесное положение нестабильно, и поэтому используется система автоматического контроля и управления. Датчиком контроля служит магнитоуправляемый датчик положения на основе эффекта Холла MD1. Он расположен в центре торца катушки и закреплен. Катушка намотана лакированной проволокой 0,35-04 мм, и имеет около 550 витков. Светодиод НL1 показывает своим свечением, что схема работает. Диод D1 обеспечивает быстродействие работы катушки.

Схема работает следующим образом. При включении ток идет через катушку, которая создает магнитное поле и притягивает магнит. Для того чтобы магнит не перевернулся, его стабилизируют, прикрепив к нему что нибудь снизу. Магнит взлетает и притягивается к электромагниту, но когда магнит попадает в зону действия датчика положения (МD1) он своим магнитным полем отключает его. Датчик в свою очередь подает сигнал на транзистор, который отключает электромагнит. Магнит падает. Выйдя из зоны чувствительности датчика, электромагнит снова включается и магнит опять притягивается к электромагниту. Таким образом, система непрерывно колеблется около некоторой точки.

Схема:

Для сборки нам понадобится:

1) резисторы 270Ом и 1кОм (0.125Вт)

2) транзистор IRF 740

3) светодиод

4) диод 1N4007

5) датчик Холла AH443

6) макетная плата

7) лакированная проволока 0.35-0.4мм

+ корпус, паяльник и т.п.

Схема:

Собираем катушку. Каркас можно сделать используя тонкий лист стеклотекстолита и старый фломастер.

Вырезаем: (примерный размер катушки: высота — 22мм, диаметр — 27мм)

Склеиваем вместе:

Наматываем примерно 550витков: (лакированная проволока 0.35-0.4мм, в навал, но более-менее стараемся мотать равномерно)

Паяем плату управления: (в качестве разъема питания я использовал обычный 3.5 mm miniJack)

Цоколевка:

Для удобства сборки можно использовать штырьковые разъемы:

В корпусе вырезаем все необходимые отверстия:

Устанавливаем все на свое место:

Теперь необходимо сделать крепление для катушки:

Прикручиваем к корпусу и крепим катушку:

Именно так нужно выгнуть датчик Холла, припаиваем к нему провода:

Подключаем всё до кучи:

После того, как достанем магнит, нужно определить какой стороной его ориентировать к электромагниту. Для этого помещаем и временно закрепляем датчик Холла в самом низу катушки. Включаем левитрон (должен загореться светодиод) и подносим магнит. Если он притягивается к катушке — то магнит ориентирован правильно, но если же магнитное поле катушки выталкивает его, то магнит необходимо перевернуть. Снизу магнита необходимо прикрепить что-то легкое. В моем случае это светодиод.

Перемещая датчик Холла добиваемся стабильного зависания на максимальном расстоянии от катушки. Закрепляем его:

15.01.2018 , 7,129 Просмотры

Данная самоделка представляет собой Левитрон с управляемым подвесом. Конструкция и схема достаточно просты, так что собрать её будет под силам даже не очень опытному радиолюбителю и любителю самоделок. В статье описана пошаговая инструкция сборки левитрона, следуя её, проблем с работоспособностью возникнуть не должно!

Схема левитрона

Что нужно для изготовления левитрона

  1. Транзистор IRF740A [Купить недорого ]
  2. Мультиплексор IN74LS157N
  3. Датчик Холла SS443A [Купить недорого ]
  4. Диод 1N4007 [Купить недорого ]
  5. Светодиод 12V
  6. Резисторы [Купить недорого ]
  7. Переключатель (Не включатель!!)
  8. Монтажная плата [Купить недорого ]
  9. Обмоточный провод ∅ 0.4 мм
  10. Неодимовые магниты разных размеров [Купить недорого ]
  11. Блок питания 5V 3A [Купить недорого ]
  12. Фанера и тонкий пластик

Изготовление Левитрона

Первым делом необходимо собрать корпус куда будет монтироваться вся схема, в том числе и катушка. Корпус можно изготовить по схеме ниже либо придумать свой вариант.

Первым делом из фанеры вырезаем все детали нижнего основания и при помощи клея ПВА собираем его.

Затем выпиливаем элементы стоек и так же с помощью клея склеиваем их.

После того как корпус собран, можно покрасить его в любой цвет, так он станет однотонным и привлекательным на вид, но это не обязательно конечно.

Перед сборкой схемы необходимо установить монтажную плату в корпус используя прокладку. Прокладка нужна для того, что бы обеспечить расстояние между корпусом и платой, что бы ножки деталей полностью заходили в отверстия и не возникало проблем при монтаже.

Затем вырезаем деталь где делаем отверстия для светодиода и переключателя. Эта деталь будет случить креплением для катушки.

При помощи супер клея, устанавливаем эту деталь на стойку.

Теперь необходимо подобрать стержень, его диаметр должен составлять 10 мм.

Затем вырезаем пластиковые стенки диаметром 45 мм.

С помощью супер клея промазываем внешние края стенок и основания для из фиксации.

Аккуратно продеваем провод.

Обрезаем провод с запасом, делаем надрез на стенке, укладываем туда конец провода и термоклеем фиксируем него, для того что бы избежать распускания.

Затем с помощью лезвия убираем все неровности.

Наша катушка готова. Теперь при помощи супер клея устанавливаем её на корпус, как на фото ниже.

Затем устанавливаем на корпус переключатель и светодиод и сразу же их припаиваем к отведенным для них проводам.

Затем припаиваем провода катушки и датчики холла. Длина проводов датчиков холла должна быть достаточной что бы достать до конца катушки.

Затем сгибаем датчики холла областью сенсора наружу.

Теперь при помощь изоленты крепим датчики как показано на рисунке ниже. Такой способ крепления в будущем, позволит без проблем менять расстояние между сенсорами. Дополнительно необходимо зафиксировать датчики с помощью канцелярских резинок.

Затем продеваем датчики в отверстие катушки и центруем их. Для этих целей и надевалась дополнительно канцелярская резинка.

При помощи пластиковых хомутов фиксируем все провода.

Теперь наш левитрон готов к эксплуатации!

Испытание Левитрона

Подключаем блок питания.

Меняя расстояние между датчиками, мы так же меняем длину хода подвеса.

Всё что остаётся сделать, это поместить магнит в зону датчика и наслаждаться чудесами левитации!))

Видео самоделки — Левитрон с управляемым подвесом

Сегодня технический прогресс достиг такого уровня, что позволил ученым подойти близко к решению вопроса создания пути поездов на магнитных подвесных элементах. Они будут ездить, не контактируя с металлическими путями, а на не котором расстоянии от них. Весь «фокус» построен на магнитной в воздухе левитации, позволяющей поезду как будто парить в пространстве.

Научная трактовка

Многие считают, что левитация в магнитном поле представляет собой свободный путь магнита, брошенного в пространстве. На самом деле этот физический процесс заключается в преодолении сил гравитации предметом, находящимся под воздействием магнита. На него оказывается магнитное давление магнитного поля. На обычном языке под магнитной в пространстве левитацией надо понимать, что если на лежащий предмет действует гравитационное давление сверху вниз, то можно создать обратную силу, способную нейтрализовать притяжение. То есть предмет левитирует в воздухе.

Для того чтобы лучше понимать магнитную в воздухе левитацию, нужно вспомнить школьную программу физики. Если взять два магнита и приблизить их друг к другу северными полюсами, то они будут отталкиваться. Когда приблизить северный полюс к южной стороне, то магниты будут притягиваться. Первый опыт позволяет левитировать в пространстве предметам с огромным весом.

Понятие о диамагнитной левитации

В физике диамагнитная левитация – это нейтрализация магнитного давления магнитного поля из любого предмета или объекта. Из многих опытов, сделанных своими руками, становится видно, что диамагнетизм делает предметы невесомыми в пространстве. Тем более, такой процесс может происходить в среде с разной температурой и с объектами, имеющими разный вес.

Примером этому может быть опыт с левитирующей в воздухе лягушкой. Животное поместили в созданное магнитное поле, имеющее индукцию более 16 Тесла, и все увидели парящую лягушку.

Кроме этого можно создать магнитное поле с индукцией 11 Тесла и поместить в созданное поле руки. За счет этого магнит начнет парить в воздухе. Тем более, полетом магнита просто управлять. Как сделать такой фокус? Нужно легко касаться магнита рукой, и он постоянно будет между руками. Пальцы будут являться диамагнетиками.

На службе у человека

На практике магнитную в воздухе левитацию с человеком доказали уже ученые. На сегодняшней повестке стоит задача применения процесса с техническими средствами, состоящими на службе цивилизации.

Летающие поезда

В научных разработках такие поезда называют маглевы (первая часть слова – магнитная, вторая часть – левитация). Сегодня они вполне удачно работают по перевозке пассажиров в Японии. Но и там они из-за значительных финансовых вложений занимают малый процент среди общего железнодорожного парка.

Важно знать! Такой железнодорожный транспорт передвигается с помощью магнитного поля, создаваемого мощными магнитными элементами, которые смонтированы под железнодорожным полотном.

Поезда такого принципа действия способны развивать большую скорость, за счет исключения силы трения. То есть за счет магнитной в воздухе левитации они не контактируют с металлическими рейками.

Механика без износа

Вторым направлением применения этого явления является механика. Многие специалисты знают о короткой эксплуатации шариковых подшипников в механических узлах, приводящей к серьезным авариям и длительным простоям производственных линий.

Сегодня на практике эта проблема решается с помощью магнитного поля. Учеными были разработаны магнитные подшипники. Особенно их применяют в труднодоступных для ремонта местах.

Кроме этого магнитные подшипники применяются в узлах вертикальных ветровых генераторов. Это дает возможность превращать энергию ветра в электроэнергию без дорогостоящего технического обслуживания и простоя.

В итоге нужно отметить, что многие процессы, описанные ранее человеком в произведениях фантастического жанра, воплощаются в реальность. Человеческому разуму скоро удастся воплотить в жизнь задумки с плазменными окнами, лазерными шторами и углеродными компьютерами.

Видео



История создания данного устройства началась еще в далеком 2016 году. Тогда автор наткнулся на статью «МозгоЧинов», и всей душой загорелся повторить данное устройство.


Но не все так легко. Собрать именно такой вариант у автора не было возможности. Тогда он стал искать альтернативу и нашел такую на «РадиоКоте».


Скачал печатку, начал травить, а потом собирать устройство.




Но в конце концов все обломалось. Спустя полгода, может чуть больше, автор стал осваивать Ардуино. И ему в голову пришла идея сделать левитрон на ней. С новыми силами он бросился в бой, но опять разочарование. Много бессонных ночей в написании кода, и сборке прошли зря. Левитирующий магнит все никак не хотел зависать, его дергало из стороны в сторону и все тут.


Спустя еще какое-то время автор наткнулся на очередную статью с полным описанием, заказал комплектующие, начал собирать, намотал новые катушки, запустил все и снова неудача. Автор начал думать, почему же левитрон не запускается и понял в чем проблема. Оказалось, что все намотанные катушки имели внутри металлическое основание, и сила с которой магнит тянулся к сердечнику превышала противодействие. Из-за этого и происходила такая лажа. В итоге автор перемотал катушки и свершилось чудо - магнит полетел.






Радости не было предела. Автор любовался своей самоделкой целый вечер. Ну это была так, предыстория, ну а теперь приступаем непосредственно к сборке. Для начала давайте ознакомимся с устройством.


Итак, в основании у нас лежат постоянные магниты, которые создают магнитное поле в виде купола. На самой его вершине находится точка равновесия, в этой точке магниты основания как бы выталкивают левитирующий магнит вверх, компенсируя силу тяжести. Но есть одно «но», эта точка крайне нестабильна, и левитирующий магнит постоянно слетает с нее.




Тут нам на помощь приходят электромагниты и датчики Холла, которые отслеживают положение магнита и как только он начинает улетать с точки, включается соответствующий электромагнит и подтягивает левитирующий магнит обратно в центр. Таким образом он совершает колебания в разные стороны, но с большой частотой, и глаз этого практически не видит.
Отлично, разобрались с теорией, переходим к практике. Мозгом схемы будет Arduino Uno.


Сперва автор хотел использовать Arduino Nano, но нечаянно спалил ее, подав не то напряжение. Силовая часть схемы - это драйвер шагового двигателя L298N.


Ну и следящая часть - это 2 датчика Холла, расположенных в центре конструкции.


Теперь давайте рассмотрим схему устройства , начнем, пожалуй, с блок схемы.


На схеме видно, что с чем соединено, теперь рассмотрим каждый блок по отдельности. Датчики Холла снабжены дополнительным усилителем на микросхеме LM324. Усиленный сигнал с Холлов поступает на аналоговый вход Ардуинки.




Следующий блок - это драйвер и катушечки. Про их намотку чуть позже, а сейчас чисто схема.


Как видим, подключается все элементарно и без особых проблем.
Теперь переходим к сборке . В качестве основания будем использовать макетную плату. Ее нужно немного уменьшить и просверлить отверстия. Расстояния между отверстиями 40мм.




После подготовки макетки займемся намоткой катушек. Как уже говорилось ранее, именно в катушках и была проблема, так как все они были с металлическим сердечником. В качестве основания возьмем колпачок для иголки шприца. Сами ограничители для катушек сделаны, как и в первых вариантах, из текстолита.


Размер катушек перед вами.


Все они мотаются в одну сторону. Количество витков 350, диаметр провода 0.44 мм. Думаю, если вносить 10, а то и 20 процентные изменение в параметры обмоток, результат не изменится.
Когда катушки готовы, устанавливаем их на плату, как и остальные части. Теперь необходимо соединить катушки по 2 штуки последовательно, таким образом, чтобы при подаче напряжения на пару катушек, одна из них притягивала, а вторая в этот момент отталкивала.


По поводу расположение датчиков Холла. Они должны быть строго на оси своих катушек. То куда они развернуты роли не играет, все будет корректироваться в настройке.


Следующий шаг - соединение всех элементов в одну цепь и прошивка Ардуино. Сам скетч и все картинки со схемами найдете в архиве проекта .


А вот после прошивки начинаются сложности. Для настройки постоянные магниты в основание ставить нельзя. Когда залили скетч в Ардуино, берем магнит, который должен левитировать и располагаем над катушками, водя рукой над тем местом где должна быть точка левитации, мы должны почувствовать сопротивление катушек.


Вот допустим, мы ведем влево, значит катушки срабатывают и тянут вправо, если тяга идет не в ту сторону, то нужно поменять местами выводы катушек на драйвере.


Теперь настало время установить магниты на плату. Магниты должны быть неодимовыми.




Вообще можно использовать и прямоугольные магниты в основании, но автор решил взять круглые, так как они дешевле и имеют отверстие для крепления. Магниты устанавливаем в пространства между катушками. Расстояние между ними по диагонали равно 5,5 см.


Теперь берем магнит, который будем подвешивать и пытаемся его расположить в центре левитации. Тут важно угадать с весом магнита. Автор делал так, брал основной магнит и на него вешал мелкие, таким образом нашел равновесие. Но магнит в центре висел не долго, его постоянно сносило в одну сторону. Тут на помощь к нам приходят подстроечные резисторы, вращая их можно смещать точку равновесия. Таким образом мы выравниваем парящий магнит.

Самый простой и наглядный пример магнитной левитации, которая создается на постоянных магнитах – это так называемый левитрон. Эту игрушку придумал американский изобретатель почти 30 лет назад. В основе конструкции всего два кольцевых магнита. Большой лежит строго горизонтально, а маленький вращается и зависает над ним. Что же его удерживает от падения? За счет чего достигается такой эффект? Игорь Белецкий высказывает на видео идеи практической реализации левитрона и проводит опыты.

Естественно, постоянные магниты направлены друг к другу одноименными полюсами, что и заставляет их отталкиваться. Но для устойчивой этого мало. Большой кольцевой магнит создает особую форму магнитного поля. Другими словами образуется магнитная впадина или потенциально яма, на дне которой волчок и находят свою устойчивость. Но это всего лишь позволяет ему не свалиться в сторон.
Решающим фактором для стабильной левитации является вращение самого волчка, вследствие чего возникает в гироскопический эффект, благодаря нему волчок не опрокидывается, хотя постоянно к этому стремится, и как только трение а воздух притормозит его вращение, сила магнитного притяжения возьмет верх.
Было бы заманчиво найти практическое применение такому подвесу. Например, сделать бесконтактный маховик – накопителя энергии. Но беда в том, что что по схеме левитрона, когда большой магнит удерживает маленький, не получается подвесить массивное тело. Сила отталкивания крайне мала – жалкие 30 грамм. Это предел. Нагрузишь больше и система сложится, а увеличивать габариты магнита непрактично и дорого. Но как же так? Неодимовые магниты обладают просто чудовищной силой отталкивания, и это действительно так.

Продаются магниты дешевле в этом китайском магазине .
Автор видео Игорь Белецкий попытался реализовать динамическую левитацию по принципу магнитного подвеса, расположив ось вращения вертикально.Вес маховика легко компенсируется двумя маленькими кольцевыми магнитами, а вот осевую стабилизацию должны были обеспечить небольшие магниты на концах оси. Плюс гироскопический эффект от вращения самого маховика. К сожалению, проведя множество экспериментов, он так и не добился желаемого. Возможно, он снова выбрал не самую удачную схему, потому что, чем больше в системе магнитов, а значит и напряжений, тем сложнее ее уравновесить.


Самый простой и дешевый способ магнитного подвеса предложил еще профессор механики Нурбей Гулия. Он просто перенес всю массу маховика на кольцевые магниты, а осевую стабилизацию оставил за обычными подшипниками, что вполне логично, ведь при вертикальной оси вращения нагрузка на них минимальная, как и потери на трение. Это, конечно, не чистая левитация, но что то весьма близкое. Автор ролика быстро собрал похожую конструкцию и убедился в ее практичности. Вместо подшипников для стабилизации оси он использовал графитовые втулки. Трение у них действительно минимально. Теперь бы еще поместить всё в безвоздушную капсулу и получится настоящий накопитель механической энергии. А потом, для полного счастья, было бы логично сделать бесконтактный отбор мощности. Самый простой способ – превратить маховик в магнитный ротор. Например, добавим катушку индуктивности и получим генератор, который при необходимости сможет работать и как электромотор для раскрутки маховика накопителя. Но это уже совсем другая история.