Последовательное соединение светодиодов на 12 вольт. Правильное включение светодиода

Светодиоды 12 вольт для авто имеют 11 главных достоинств, о которых вам полезно будет узнать, они постепенно вытесняют из обихода старые лампочки, даже в автомобилях водители стараются установить светодиодную подсветку. Сегодня ее широко используются для:

  • освещения салона машины;
  • подсветки приборной доски;
  • освещения багажника
  • замены обычных лампочек, установленных в фарах


Схема подбора светодиодных LED ламп для автомобиля

Спрос на светодиоды вполне оправдан, ведь они имеют множество преимуществ перед лампами накаливания и ртутными лампочками.

Светодиоды 12 вольт для авто их преимущества и эффективность

1. Экономичное энергопотребление. Светодиодные лампы потребляют на 70% меньше электроэнергии, чем лампы накаливания.
2. Светодиоды не перегорают, поэтому их не придется менять даже после длительного периода эксплуатации.
3. Они не требуют специальных условий для утилизации, потому что светодиоды не опасны для окружающей среды, в отличие от ртутных ламп.
4. Яркость освещения остается постоянной, не зависимо от срока службы ламп.
5. Светодиодные лампы очень прочные. Их изготавливают из алюминия и поликарбонатного стекла, способного выдерживать большие ударные нагрузки.
6. Светодиоды обеспечивают хорошую освещаемость. При таком свете все предметы и их цвета видны отчетливо. Светодиоды 12 вольт для авто идеально подходят для ближнего света.
7. Светодиоды включаются мгновенно и могут работать при любой температуре окружающей среды.
8. Светодиодное освещение не вызывает усталости глаз, потому что оно не имеет эффекта низкочастотных пульсаций.
9. Мощные фонари, сделанные из светодиодов, не слепят глаза.
10. Они меньше нагреваются, поэтому не испортят оптику в авто.

  • LED-устройства дают более яркий свет, если сравнивать его со светом от ламп накаливания. Поэтому ваша машина со светодиодными фарами будет более заметной на трассе. Светодиодные лампы для автомобиля 12 вольт широко используются в противотуманных фарах. Стробоскоп со светодиодами поможет сделать ваш автомобиль заметнее на дороге в любое время суток. Сигнализация с ярким светодиодом отпугнет грабителей.

Сверхяркие автомобильные LED-лампы – конструктивные особенности

Устройство светодиодных лампочек с цоколем Е27 видно на рисунке 1

Виды светодиодов, которые используются в автомобилях

Для получения необходимой яркости освещения в разных частях автомобиля используются такие типы светодиодных ламп:

  • в передних фарах дальнего света применяют цоколь Н1. Водители грузового транспорта часто используют светодиодные лампы для авто 24 вольта, с успехом заменяющие ксеноновые;
  • чтобы сделать огни ближнего света более яркими устанавливают лампы Н4 и Н7.
  • в багажнике и салоне используют C5W, W5W, BA9S;
  • подсветка заднего номерного знака или панели приборов монтируется с использованием ламп Т5;
  • для противотуманных фар подойдут лампы Н1, Н3, НВ3, НВ2, Н4,Н7, Н11. Автомобильные светодиоды на 12 вольт применяются чаще других. Светодиодная лампа на 12 вольт от аккумулятора может использоваться также для ближнего освещения.
  • для поворотного сигнала подходят лампы BA15S. Этот тип светодиодов соответствует P21W.
  • для огней задних габаритов устанавливают BAY15D. В европейских авто этот тип двухконтактных светодиодов обозначают P21/5W.

Популярные led-лампы на 12 вольт. Производители и их ценовые категории

Среди всех покупаемых светодиодных ламп для авто лидируют изделия таких компаний:

  • КАРКАМ Электроникс. Компания выпускает LED-лампы для автомобильного освещения на основе светодиодов CREE. Комплект из двух ламп Н4 обойдется в 2990 руб. Светодиоды 12 вольт для авто этой компании часто применяются в противотуманных фарах.
  • OSRAM. Изделия OSRAM LED изготавливаются с точным соблюдением технологии, с тщательным контролем качества сырья на всех этапах процесса и на каждом из заводов OSRAM, что расположены по всему миру. Цена Osram P21W LEDriving Premium около 1200 руб.
  • Philips Automotive. Компания является мировым лидером в производстве LED -лампочек. Лампа Philips X-treme Ultinon LED H4 обойдется в 3847 руб. Распространенные
    светодиоды для автомобиля 12 вольт от Филипс обойдутся в 600-700 рублей. Популярные hb4 светодиоды можно приобрести приблизительно за 4000 руб.
  • Маяк. Лампа H11 знаменитой российской компании обойдется в 500 рублей.

Светодиоды 24 вольта для авто (Китай) также пользуются спросом на рынке из-за низкой стоимости. Светодиодные лампы для автомобиля 24 вольта можно купить в среднем за 1000 рублей.

Особенности монтажа и схемы для подключения. Почему нельзя напрямую подключать светодиоды к сети автомобиля

Напряжение в электросети автомобиля колеблется от 12, 5 вольт до 14,5 вольт, а рабочее напряжение светодиода около 3 вольт, поэтому напрямую подсоединять их в бортовую сеть нельзя. Перед подключением каждого элемента к аккумулятору, нужно определить полярность светодиода. Минус соединяют с катодом светодиода, а плюс с источником постоянного тока. Подключение светодиодов к 12 вольт автомобиля без резистора выполнять нельзя.

Для создания подсветки используют готовые ленты. Они сделаны из нескольких светодиодов и резисторов. Каждый такой кластер предназначен для определенного напряжения.

Если электрические параметры отвечают допустимым для вашего автотранспорта, то можно начинать монтаж. При необходимости светодиодные ленты можно делить на части. Делать это нужно по разметкам, нанесенным производителем, чтобы не повредить электросхему.

Как самостоятельно собрать цепь светодиодов. Зачем необходим стабилизатор напряжения и резистор

Цепь из трех светодиодов белого цвета с напряжением по 3,5 вольт и резистора, несложно собрать своими руками. Все лампочки соединяют последовательно, а разницу с напряжением автомобильной электросети компенсируют с помощью резистора на 100 Ом и мощностью 0, 5 Ватт. Его тоже подключают в цепь последовательно. Цепочек можно собрать несколько штук и подключить их параллельно, чтобы на всех участках было одинаковое падение напряжения. Лампочки собирают на фольгированном текстолите.

Стабилизатор напряжения, подключенный к цепи, поможет предотвратить снижение яркости фар в тот момент, когда автомобиль начнет движение

Для выполнения сборки понадобятся пластиковые хомуты и паяльник. Если вы профессионально умеете паять и разбираетесь в устройстве электропроводки вашего транспорта, то можете смело приступать к работе. Если таких знаний у вас нет, то лучше доверить работу профессионалам, чтобы не рисковать своим автомобилем. Они выполнят эту работу быстро и качественно. Ниже видео с тестом светодиодов 12 вольт.

Понятие мощных и ярких светодиодов (LED) очень расплывчиво и точного определения нет. В эту категорию попадают изделия с высокой яркостью свечения и потребляемой мощностью. Данное определение появилось совсем недавно и обусловлено активным развитием светоизлучающих диодов в последние годы. Ранее они играли роль индикаторных лампочек и потребляли максимум, десятки мили Ватт. Сейчас они используются в освещении повсеместно. От освещения комнаты квартиры до подсветки дороги в фарах ближнего света автомобиля. И их потребляемая мощность достигает 100 Ватт и более (в основном это уже светодиодные сборки). Естественно, подобные светодиоды должны обладать высоким уровнем излучаемой яркости, соответственно и высокой мощностью. В рамках статьи разберемся, что представляют из себя мощные светодиоды и какие из них самые яркие.

Кто производит самые мощные и яркие LED

На рынке светодиодной продукции нишу в данном направлении заняла известная, американская фирма CREE.

В модельном ряде компании даже имеется две категории светодиодов:

  • XLamp — мощные;
  • High-Brightness – яркие.

Конечно, фирма CREE не единственная, а всего лишь одна из популярных. Конкуренцию составляют и другие фирмы, например Bridgelux, OSRAM, NICHIA.

Стоит отметить, что рынок наполнен китайскими подделками, мощность и яркость которых, существенно отличается от оригинальных. Например, срок службы оригинальных LED рассчитана 50 000 часов, в то время как китайские подделки еле дотягивают до 20 000 часов.

Характеристики мощных светодиодов

Большая часть ярких и мощных светодиодов работает от напряжения 12 Вольт. В редких случаях напряжение питания составляет 24 – 48 Вольт.

Как мы уже отметили ранее, понятие мощного светодиода не определено конкретно, поэтому некоторые определяют мощный светоизлучающий диод с параметром от 1 Ватта, а кто-то от 10 Ватт. Мы определим нижнюю границу в 0,5 Ватт. Т.к. с этой границы в свое время компания CREE показала миру первый мощный светодиод. Большой бум начался с границы в 1 Ватт.

Самый яркий и мощный

Посмотрим на характеристики самого супер яркого светодиода фирмы CREE – XLamp XM-L.

Для справки, в 2010 году разработанный LED XLamp XM-L установил мировой рекорд. Его соотношение яркости к мощности составило 160 Люмен на Ватт при потреблении тока 350 мА. Для того времени это было достижением в отрасли.

Характеристики мощного светодиода XLamp XM-L на 10 Ватт.

  • напряжение: 12 Вольт;
  • эффективность: до 160 Люмен на Ватт;
  • светоотдача: до 840 Люмен (при токе 3 А);
  • мощность: 10 Вт;
  • максимальный ток: 3 Ампера;
  • размер основания: 5 х 5 мм;
  • цветовая температура: холодный белый;
  • тепловое сопротивление: 2,5 градуса на Ватт;
  • прямое падение напряжения: не более 2,9 Вольт.

Максимальное значение тока достигает 3 Ампер, при этом светоизлучающий диод выдает уже 910 Люмен. В свое время светоизлучающий диод XLamp XM-L наделал много шума и на тот день все фирмы конкуренты не имели продукции даже близко похожей по техническим параметрам. Поэтому я и отметил фирму CREE, как лидера в данном направлении светодиодной техники. Они всегда на шаг впереди.

На сегодняшний день линейка LED XLamp XM-L производится для рынка только в холодном цвете, с чем это связано неизвестно. Но найти на прилавках магазином данный светодиод с цветовой температурой отличной от диапазона 5000 – 8300 невозможно.

Малыш ML-E

Еще один интересный мощный и яркий светоизлучающий диод от американской фирмы класса XLamp носит название ML-E.

Его мощность составляет всего 0,5 Ватт. По факту данный LED имеет хорошие показатели, посмотрим на них:

  • напряжение: 12 В;
  • тип исполнения: в корпусе PLCC4 (поверхностный монтаж) с теплоотводящей изолированной площадкой HeatSink;
  • габариты: 3,5 х 3,5 х 1,2;
  • эффективность: 112 Лм / Вт (очень высокое значение);
  • тепловое сопротивление: 11 градусов / Вт (хороший показатель);
  • максимальный ток: 175 мА (нормированный: 150 мА);
  • диапазон выпускаемых цветовых температур: 2600 – 8300 К;
  • яркость: 30 Люмен (теплый белый), 51 Люмен (холодный белый).

Для наглядной демонстрации возможностей CREE ML-E приведем пример подсветки багажника в автомобиле.

Пример яркости свечения ML-E

Список мощных и ярких светодиодов можно продолжать бесконечно, ведь мы рассмотрели для примера, характеристики, двух самых популярных на 0,5 и 10 Вт, а есть еще на 3w, 20w, 50w, 100w и т.д. Надеемся этого достаточно, чтобы у Вас сложилась в голове определенная картина и Вы нашли ответы на поставленные вопросы. Надеемся у Вас не осталось вопросов вроде – какие светодиоды самые яркие и мощные? Если, все же остались, пишите в комментариях, мы постараемся дать развернутые ответы.

В предыдущих статьях были описаны различные вопросы подключения светодиодов. Но в одной статье всего не написать, поэтому придется эту тему продолжить. Здесь речь пойдет о различных способах включения светодиодов.

Как было сказано в упомянутых статьях, т.е. ток через него должен быть ограничен с помощью резистора. Как рассчитать этот резистор, было уже рассказано, повторяться здесь не будем, но формулу, на всякий случай, приведем еще раз.

Рисунок 1.

Здесь Uпит. - напряжение питания, Uпад. - падение напряжение на светодиоде, R - сопротивление ограничивающего резистора, I - ток через светодиод.

Однако, несмотря на всю теорию, китайская промышленность выпускает всевозможные сувениры, брелоки, зажигалки, в которых светодиод включен без ограничительного резистора: просто две-три дисковых батарейки и один светодиод. В этом случае ток ограничивается внутренним сопротивлением батареи, мощности которой просто не хватает, чтобы спалить светодиод.

Но тут, кроме перегорания, есть и еще одно неприятное свойство - деградация светодиодов, более всего присущее светодиодам белого и синего цветов: через некоторое время яркость свечения становится совсем незначительной, хотя ток через светодиод протекает вполне достаточный, на уровне номинального.

Нельзя сказать, что не светит вовсе, свечение еле заметно, но это уже не фонарик. Если при номинальном токе деградация происходит не ранее, чем через год непрерывного свечения, то при завышенном токе дождаться этого явления можно через полчаса. Такое включение светодиода следует назвать плохим.

Подобную схему можно объяснить лишь стремлением сэкономить на одном резисторе, припое, и трудозатратах, что при массовых масштабах производства, видимо, оправдано. Кроме того, зажигалка или брелок вещь одноразовая, копеечная: кончился газ или села батарейка - сувенир просто выкинули.

Рисунок 2. Схема плохая, но применяется достаточно часто.

Очень интересные вещи получаются (конечно, случайно), если по такой схеме подключить светодиод к блоку питания с выходным напряжением 12В и током не менее 3А: происходит ослепительная вспышка, раздается достаточно громкий хлопок, дымок, и остается удушливый запах. Так и вспоминается вот такая притча: «Можно ли посмотреть на Солнце в телескоп? Да, но только два раза. Один раз левым глазом, другой правым». Кстати, подключение светодиода без ограничительного резистора наиболее распространенная ошибка у начинающих, и о ней хотелось бы предупредить.

Чтобы исправить это положение, продлить срок службы светодиода, схему следовало бы чуточку изменить.

Рисунок 3. Хорошая схема, правильная.

Именно такую схему следует считать хорошей или правильной. Чтобы проверить, правильно ли указан номинал резистора R1, можно воспользоваться формулой, показанной на рисунке 1. Будем считать, что падение напряжения на светодиоде 2В, ток 20мА, напряжение питания 3В обусловлено применением двух пальчиковых батареек.

А вообще не надо стремиться ограничить ток на уровне предельно допустимых 20мА, можно запитать светодиод меньшим током, ну, хотя бы, миллиампер 15…18. При этом произойдет совсем незначительное уменьшение яркости, который глаз человека, в силу особенностей устройства, не заметит совсем, а вот срок службы светодиода намного увеличится.

Еще один пример плохого включения светодиодов можно встретить в различных фонариках, уже более мощных, нежели брелоки и зажигалки. В этом случае некоторое количество светодиодов, иногда достаточно большое, просто включено параллельно, и тоже без ограничительного резистора, в роли которого опять же выступает внутреннее сопротивление батареи. Такие фонарики достаточно часто попадают в ремонт именно по причине выгорания светодиодов.

Рисунок 4. Совсем плохая схема включения.

Казалось бы, исправить положение может схема, показанная на рисунке 5. Всего один резистор, и дело, казалось бы, пошло на поправку.

Рисунок 5. Так уже немного лучше.

Но и такое включение поможет мало. Дело в том, что в природе просто не найти двух одинаковых полупроводниковых приборов. Именно поэтому, например, транзисторы одного типа имеют различный коэффициент усиления, даже если они из одной производственной партии. Тиристоры и симисторы тоже бывают разные. Некоторые открываются легко, а другие настолько тяжко, что от их применения приходится отказаться. То же можно сказать и о светодиодах - двух абсолютно одинаковых, тем более трех или целой кучи, найти просто невозможно.

Замечание на тему. В DataSheet на светодиодную сборку SMD-5050 (три независимых светодиода в одном корпусе) включение, показанное на рисунке 5, не рекомендуется. Мол, из-за разброса параметров отдельных светодиодов, может быть заметна разница в их свечении. А казалось бы, в одном корпусе!

Никакого коэффициента усиления у светодиодов, конечно же, нет, зато есть такой важный параметр, как прямое падение напряжения. И если даже светодиоды взяты из одной технологической партии, из одной упаковки, то двух одинаковых в ней просто не будет. Поэтому ток у всех светодиодов будет разный. Тот светодиод, у которого ток будет больше всех, и рано или поздно превысит номинальный, сгорит раньше всех.

В связи с этим прискорбным событием весь возможный ток пойдет через два оставшихся в живых светодиода, естественно, превышая номинальный. Ведь резистор-то рассчитывался «на троих», на три светодиода. Повышенный ток вызовет и повышенный нагрев кристаллов светодиодов, и тот, который окажется «слабее», тоже сгорает. Последнему светодиоду также не остается ничего иного, как последовать примеру своих товарищей. Такая вот цепная реакция получается.

В данном случае под словом «сгорит» подразумевается просто разрыв цепи. Но может произойти, что в одном из светодиодов получится элементарно короткое замыкание, шунтирующее остальные два светодиода. Естественно, что они обязательно погаснут, хотя и останутся в живых. Резистор при такой неисправности будет усиленно греться и в конце концов, может быть, сгорит.

Чтобы такого не произошло, схему надо немного изменить: для каждого светодиода установить свой резистор, что и показано на рисунке 6.

Рисунок 6. А вот так светодиоды прослужат очень долго.

Здесь все, как требуется, все по правилам схемотехники: ток каждого светодиода будет ограничен своим резистором. В такой схеме токи через светодиоды не зависят друг от друга.

Но и это включение не вызывает особого восторга, поскольку количество резисторов равно количеству светодиодов. А хотелось бы, чтобы светодиодов было побольше, а резисторов поменьше. Как же быть?

Выход из этого положения достаточно простой. Каждый светодиод надо заменить цепочкой последовательно включенных светодиодов, как показано на рисунке 7.

Рисунок 7. Параллельное включение гирлянд.

Платой за такое усовершенствование будет увеличение напряжения питания. Если для одного светодиода достаточно всего трех вольт, то даже два светодиода, включенных последовательно, от такого напряжения уже не зажечь. Так какое же напряжение понадобится для включения гирлянды из светодиодов? Или по-другому, сколько светодиодов можно подключить к источнику питания с напряжением, например, 12В?

Замечание. Под названием «гирлянда» здесь и далее следует понимать не только елочное украшение, но также любой осветительный светодиодный прибор, в котором светодиоды соединены последовательно или параллельно. Главное, что светодиод не один. Гирлянда, она и в Африке гирлянда!

Чтобы получить ответ на этот вопрос, достаточно напряжение питания просто разделить на падение напряжения на светодиоде. В большинстве случаев при расчетах это напряжение принимается 2В. Тогда получается 12/2=6. Но не надо забывать, что какая-то часть напряжения должна остаться для гасящего резистора, хотя бы вольта 2.

Получается, что на светодиоды остается только 10В, и количество светодиодов станет 10/2=5. При таком положении дел, чтобы получить ток 20мА, ограничительный резистор должен иметь номинал 2В/20мА=100Ом. Мощность резистора при этом составит P=U*I=2В*20мА=40мВт.

Такой расчет вполне справедлив, если прямое напряжение светодиодов в гирлянде, как было указано, 2В. Именно это значение часто принимается при расчетах, как некоторое среднее. Но на самом деле это напряжение зависит от типа светодиодов, от цвета свечения. Поэтому при расчетах гирлянд следует ориентироваться на тип светодиодов. Падения напряжения для светодиодов разных типов приведены в таблице, показанной на рисунке 8.

Рисунок 8. Падение напряжения на светодиодах разных цветов.

Таким образом, при напряжении источника питания 12В, за вычетом падения напряжения на токоограничивающем резисторе, всего можно подключить 10/3,7=2,7027 белых светодиодов. Но кусочек от светодиода не отрежешь, поэтому подключить возможно только два светодиода. Такой результат получается если из таблицы взять максимальное значение падения напряжения.

Если же в расчет подставить 3В, то совершенно очевидно, что подключить возможно три светодиода. При этом каждый раз придется кропотливо пересчитывать сопротивление ограничительного резистора. Если реальные светодиоды окажутся с падением напряжения 3,7В, а может выше, три светодиода могут и не зажечься. Так что лучше остановиться на двух.

Принципиально не важно, какого цвета будут светодиоды, просто при расчете придется учитывать разные падения напряжений в зависимости от цвета свечения светодиода. Главное, чтобы они были рассчитаны на один ток. Нельзя собрать последовательную гирлянду из светодиодов, часть которых с током 20мА, а другая часть из 10-ти миллиамперных.

Понятно, что при токе 20мА светодиоды с номинальным током 10мА попросту сгорят. Если же ограничить ток на уровне 10мА, то 20-ти миллиамперные засветятся недостаточно ярко, примерно как в выключателе со светодиодом: ночью видно, днем нет.

Чтобы облегчить себе жизнь, радиолюбители разрабатывают различные программы-калькуляторы, облегчающие всевозможные рутинные расчеты. Например, программы для расчета индуктивностей, фильтров различного типа, стабилизаторов тока. Есть такая программа и для расчета светодиодных гирлянд. Скриншот такой программы приведен на рисунке 9.

Рисунок 9. Скриншот программы «Расчет_сопротивления_резистора__Ledz_».

Программа работает без установки в системе, просто ее надо скачать и пользоваться. Все настолько просто и понятно, что никаких пояснений к скриншоту совсем не требуется. Естественно, что все светодиоды должны быть одного цвета и с одинаковым током.

Ограничительные резисторы это, конечно, хорошо. Но только тогда, когда известно, что вот эта гирлянда будет питаться от постоянного напряжения 12В, и ток через светодиоды не превысит расчетного значения. А как быть, если просто нет источника с напряжением 12В?

Такая ситуация может возникнуть, например, в грузовом автомобиле с напряжением бортовой сети 24В. Выйти из такой кризисной ситуации поможет стабилизатор тока, например, «SSC0018 - Регулируемый стабилизатор тока 20..600мА». Его внешний вид показан на рисунке 10. Такое устройство можно купить в интернет-магазинах. Цена вопроса 140…300 рублей: все зависит от фантазии и наглости продавца.

Рисунок 10. Регулируемый стабилизатор тока SSC0018

Технические характеристики стабилизатора показаны на рисунке 11.

Рисунок 11. Технические характеристики стабилизатора тока SSC0018

Изначально стабилизатор тока SSC0018 был разработан для применения в светодиодных светильниках, но может также применяться для зарядки малогабаритных аккумуляторов. Пользоваться устройством SSC0018 достаточно просто.

Сопротивление нагрузки на выходе стабилизатора тока может быть нулевым, попросту можно замкнуть накоротко выходные клеммы. Ведь стабилизаторы и источники тока не боятся коротких замыканий. При этом ток на выходе будет номинальным. Уж если установили 20мА, то столько и будет.

Из сказанного можно сделать вывод, что к выходу стабилизатора тока можно «напрямую» подключить миллиамперметр постоянного тока. Начинать такое подключение следует с самого большого предела измерений, ведь какой там отрегулирован ток никому не известно. Далее простым вращением подстроечного резистора установить требуемый ток. При этом, конечно, не забыть подключить стабилизатор тока SSC0018 к блоку питания. На рисунке 12 показана схема включения SSC0018 для питания светодиодов, соединенных параллельно.

Рисунок 12. Подключение для питания светодиодов, соединенных параллельно

Здесь все понятно из схемы. Для четырех светодиодов с током потребления 20мА на каждый на выходе стабилизатора надо выставить ток 80мА. При этом на входе стабилизатора SSC0018 потребуется напряжение чуть большее, чем падение напряжения на одном светодиоде, о чем было сказано выше. Конечно, подойдет и большее напряжение, но это приведет только к дополнительному нагреву микросхемы стабилизатора.

Замечание. Если для ограничения тока с помощью резистора напряжение источника питания должно превышать общее напряжение на светодиодах незначительно, всего вольта на два, то для нормальной работы стабилизатора тока SSC0018 это превышение должно быть несколько выше. Никак не меньше, чем 3…4В, иначе попросту не откроется регулирующий элемент стабилизатора.

На рисунке 13 показано подключение стабилизатора SSC0018 при использовании гирлянды из нескольких последовательно соединенных светодиодов.

Рисунок 13. Питание последовательной гирлянды через стабилизатор SSC0018

Рисунок взят из технической документации, поэтому попробуем рассчитать количество светодиодов в гирлянде и постоянное напряжение, потребное от блока питания.

Указанный на схеме ток, 350мА, позволяет сделать вывод, что гирлянда собрана из мощных белых светодиодов, ведь как было сказано чуть выше, основное назначение стабилизатора SSC0018 это источники освещения. Падение напряжения на белом светодиоде находится в пределах 3…3,7В. Для расчета следует взять максимальное значение 3,7В.

Максимальное входное напряжение стабилизатора SSC0018 составляет 50В. Вычитаем из этого значения 5В, необходимых для работы самого стабилизатора, остается 45В. Этим напряжением можно «засветить» 45/3,7=12,1621621… светодиодов. Очевидно, что это надо округлить до 12.

Количество светодиодов может быть и меньше. Тогда входное напряжение придется уменьшить (при этом выходной ток не изменится, так и останется 350мА как был отрегулирован), зачем на 3 светодиода, пусть даже мощных, подавать 50В? Такое издевательство может закончиться плачевно, ведь мощные светодиоды отнюдь недешевы. Какое потребуется напряжение для подключения трех мощных светодиодов желающие, а они всегда найдутся, могут посчитать сами.

Регулируемый стабилизатор тока SSC0018 устройство достаточно хорошее. Но весь вопрос в том, всегда ли оно нужно? Да и цена девайса несколько смущает. Каков же может быть выход из создавшегося положения? Все очень просто. Прекрасный стабилизатор тока получается из интегральных стабилизаторов напряжения, например, серии 78XX или LM317.

Для создания такого стабилизатора тока на базе стабилизатора напряжения потребуется всего 2 детали. Собственно сам стабилизатор и один единственный резистор, сопротивление и мощность которого поможет рассчитать программа StabDesign, скриншот которой показан на рисунке 14.

Рисунок14. Расчет стабилизатора тока с помощью программы StabDesign.

Особых пояснений программа не требует. В выпадающем меню Type выбирается тип стабилизатора, в строке Iн задается требуемый ток и нажимается кнопочка Calculate. В результате получается сопротивление резистора R1 и его мощность. На рисунке расчет проведен для тока 20мА. Это для случая, когда светодиоды соединены последовательно. Для параллельного соединения ток подсчитывается так же, как показано на рисунке 12.

Светодиодная гирлянда подключается вместо резистора Rн, символизирующего нагрузку стабилизатора тока. Возможно даже подключение всего одного светодиода. При этом катод подключается к общему проводу, а анод к резистору R1.

Входное напряжение рассмотренного стабилизатора тока находится в пределах 15…39В, поскольку применен стабилизатор 7812 с напряжением стабилизации 12В.

Казалось бы, на этом рассказ о светодиодах можно закончить. Но есть еще светодиодные ленты, о которых будет рассказано в следующей статье.

Многие автовладельцы хотели бы заменить простые лампочки на светодиоды , их освещение это; — первое — очень низкий ток потребления, второе — надежность и долговечность, третье — более высокая светоотдача по сравнению с простой лампочкой и четвертое отсутствие нагрева. Если вы вдруг забыли выключить габариты, а утром пришли в гараж и были приятно удивлены, что аккумулятор не разряжен.

Эта статья расскажет вам как самостоятельно заменить автомобильные лампочки на светодиоды и избежать ошибок. Хочу сказать- не пытайтесь сразу выкидывать лампочки и сувать на их место светодиоды, ничего хорошего из этого не выйдет…

Будьте внимательны и аккуратны , ремонт электрооборудования в результате ваших неправильных действий – штука не очень приятная. Это касается не только светодиодов, но и других, любых действий с электропроводкой автомобиля. Но, тем не менее, ничего сложного в подобной замене нет, любой человек способен произвести ее самостоятельно, прочитав данную статью.

Основы, которые нам нужно усвоить:

Первое —— Напряжение в сети автомобиля обычно это 12 — 13,5 Вольт при заглушенном движке и 13 — 14,5 В при заведенном двигателе.

Второе ——- Напряжение питания обычного светодиода – 3,5 вольта. В зависимости от цвета и маркировки — это значение может быть таким — для красных и желтых светодиодов — 2 — 2,5 вольта.; для зеленых, синих, белых — 3-3,8 вольт. Ток маломощного светодиода – 20 мА, а мощного достигает до 350 мА. (Но это очень мало)

Третье ——- Не все светодиоды,если сравнивать с лампочками, освещают пространство вокруг себя. Это нужно учитывать к примеру, когда меняешь индикаторные лампы, к примеру, в приборной панели. Когда покупаете светодиод нужно обратить внимание на тип линзы или просто спросить у продавца (если конечно он в этом сам разбирается). Узконаправленные светодиоды, практически все, имеют на конце маленькую увеличительную линзу. Мой совет, купите разных светодиодов и проверьте сами какие вам больше подойдут.

Четвертое ——- У светодиода, есть плюс и минус, как и у аккумулятора. Минус у него это- катод, плюс — анод, вот как выглядят на схемах:

Если вы правильно поняли, то просто взять и воткнуть в бортовую сеть, значит просто сжечь его. Хотите в этом убедиться? Попробуйте подключить любой светодиод напрямую к аккумулятору. Он красиво вспыхнет, задымится и сгорит. Зато будете иметь представление, как это происходит.

Подключаем светодиоды

Первое — В продаже, на сегодняшний день, есть светодиодные панельки, они ещё называются кластерами, вот эти кластеры рассчитаны на 12 вольт. Их можно сразу взять и подключить к бортовой сети автомобиля и радоваться как они красиво горят. Но есть одно «но»– при изменении оборотов двигателя, соответственно будет и меняться их яркость.

Не очень заметно конечно, но видно… К тому же, нормально они светят только при напряжении 12,5 вольт, и если у вас низкое напряжение в сети авто, кластеры будут гореть тускло. Состав кластера это — цепочка светодиодов и резисторов. На каждые 3 светодиода — один резистор, который нужен для гашения лишнего напряжения.

Светодиодные ленты, по принципу, устроены практически также, и если вам надо, к примеру отрезать какой-то кусок, небольшого размера, посмотрите на ленту, там вы увидите те места, где ее можно отрезать. Обычно это 3 светодиода и 1 резистор, и можно резать…

Второе — Можно самому сделать цепочку из последовательно соединенных между собой кластеров и два вывода к питанию Но любые светодиоды можно высчитать…К примеры если они для 12-14 вольт, то нам понадобится 3 светодиода. В сумме они дадут 3,5х3=10,5 вольт. Последовательное соединение– это когда плюс первого светодиода соединяется с минусом следующего диода и так далее…

Но, их пока подключать еще нельзя, нужно также последовательно включить в цепочку гасящий резистор — номиналом 100-150 Ом, и мощностью 0,5 Вт. Резисторы можно приобрести в любом магазине радиодеталей.

Но данный способ имеет недостаток, о котором мы говорили выше — это изменение свечения при смене оборотов двигателя. Но этим способом можно пользоваться…Если вам надо поставить больше 3 диодов(в цепочке), то тут уже придеться соединять паралельно.

Параллельно — это значит соединять несколько цепочек (3 диода+резистор—одна цепочка), плюс цепочки надо соединять обязательно с плюсом следующей цепочки, и также минус к минусу. Номинал резистора, можно высчитать по закону Ома. Если вы не дружите с Омом то, можно применить такое правило: если включаете один светодиод — то резистор надо 500 Ом, если 2, то 300 Ом, 3 светодиода — 150 Ом. Но лучше всё же почитайте закон Ома, чтобы не наделать ошибок.

Теперь немного по-подробней. Вам понадобятся:

тестер

Первое — Прибор-измеритель или просто сказать»Мультиметр». Можно купить практически везде… Только не надо покупать самый дорогой, чем проще тем вам будет понятней. Им можно будет произвести все нужные измерения, но сначало, конечно надо немного изучить по инструкции как им пользоваться.
Второе — Немного о Законе Ома для электрической цепи, то есть для вашего
светодиода и резистора, будет такая формула R=U/I .

Где R — это сопротивление резистора, U — напряжение, которое нам надо погасить, и I — это ток в цепи. То есть, объесняю, для того чтобы получить сопротивление гасящего резистора, надо взять и разделить напряжение, на ток, который нужно получить.

Рассмотрим пример.

Допустим у нас есть белый светодиод и его надо подключить к авто… Напряжение питания данного светодиода 3,5 вольт, ток — 20 мА.

Первое — Что нужно сделать это измерить напряжение в том месте, где мы его собираемся устанавливать. Само напряжение в разных частях автомобиля (на разных разъёмах)может быть разным…
Итак включаем прибор в режим измерения напряжения и производим замер.
Допустим у нас вышло 13 вольт.

Второе — Вычитаем из 13 вольт напряжение светодиода (3,5 вольт). И получаем 9,5 вольт. Ток в нашу формулу надо подставлять в амперах, в одном ампере 1000 миллиампер, то есть 20 мА это 0,02 Ампера. Также по
формуле вычисляем сопротивление: 9,5/0,02=475 Ом .

Для того чтобы наш резистор не грелся, надо вычислить его мощность. Для этого нам нужно умножить напряжение, которое гасит резистор — 9,5 в, на ток, который проходит через него — 0,02 ам. 9,5 умножаем на 0,02= 0,19 ватт. Конечно берём чуть с запасом — то есть 0,5-1 ватт.

Чтобы померить ток в цепи. Надо включить наш «мультиметр» в режиме измерения тока в разрыв между резистором и светодиодом (то есть соединять надо последовательно). Для этого надо установить диск переключения на мультиметре на «10А», и воткнуть красный щуп в гнездо с надписью «10А». Он должен нам показать 20 миллиампер или немного меньше. У резисторов и светодиодов есть небольшой разброс параметров, поэтому ток может немного отличаться.

Чем больше будет ток, тем ярче будет светить наш светодиод, но это может сказаться на сроке его службы. Поэтому для обычных светодиодов не нужно устанавливать ток выше 20 микроампер, среднее значение — 18мА.

Вот так теперь вы узнали, из вышеописанного, как можно подключить любое количество светодиодов в любом месте автомобиля. Нужно только знать напряжение и ток, и далее следовать формуле.Ещё к дополнению, можно подключать параллельно светодиоду простой диод, практически любого типа, он избавит нас от напряжения обратной полярности. Подключать надо катод диода к аноду светодиода.

Дальше—— мы узнаем как подсоеденить светодиоды, чтобы обороты двигателя не влияли на их яркость…
Конечно самым правильным будет включить светодиоды через стабилизатор. Стабилизатор служит для стабилизирования напряжения и ограничивания тока, таким образом, можно подсоединить хоть киловольт, а светодиод всё равно будет светить нормально.

Для стабилизации тока используются приборы, их называют драйверами. Вот самый простой драйвер — схема на микросхеме-стабилизаторе LM317. Главное достоинство этой микросхемы — её очень трудно спалить.

Нам потребуется микросхема и трехвыводной стабилизатор напряжения.

Слишком подробно не буду писать, итак нам надо переменный резистор 0,5 кОм. Дальше надо припаять средний вывод резистора к любому крайнему. Включаем свой мультиметр, ставим в режим измерения сопротивления. Потом подключаем к проводам резистора, который паяли, и замеряем сопротивление. Вращением резистора надо добиться, чтобы он нам показал 500 Ом (или около того). Это надо для того, чтобы не спалить светодиод при слишком маленьком сопротивлении резистора. Дальше собираем и паяем цепь, ещё раз всё проверяем и подключаем.

Прибор включаем в режим измерения тока. Начинаем вращать переменный резистор и добиваемся показаний в 20 мА. Потом отключаем цепь и замеряем сопротивление резистора и впаиваем вместо него обычный резистор с таким же сопротивлением. Вот и все ваш первый в жизни драйвер собран.

Он у нас имеет ограничение по максимальному току в пределах 1-1,5 А, Если будете включать много светодиодов, то тогда, берите резистор большей мощности.

Если в процессе работы микросхема становится горячей — то нужно сделать для нее теплоотвод или радиатор. Ещё один нюанс наша — корпус автомобиля это «минус» аккумулятора, а подложка нашей микросхемы (корпус) — со своей второй ножкой. Поэтому нельзя крепить ее на кузов, то есть массы без прокладки.

Сама микросхема устроена так, что она снижает напряжение, которое подается на светодиод, на 2-3 вольта.
Поэтому выходное напряжение у этого драйвера будет 11-12 вольт. Но его главный плюс он легок в сборке.
Ну вот будем надеяться, что у вас всё получилось, если что не понятно, пишите в комментариях или на