Рыба договора установки узла управления системой отопления. Автоматизированный узел управления теплоснабжения вашего дома

К атегория: Водоснабжение и отопление

Узлы управления местными системами отопления

Из наружных тепловых сетей вода поступает в здания к узлам управления (рис. 255), установленным на вводах при помощи которых включают, выключают, контролируют и регулируют местные системы.

У ввода в здание на подающем и обратном трубопроводах установлены задвижки для отключения местной системы от наружной сети. Для пуска системы в зимний период во избежание замерзания трубопровода от тепловой магистрали до узла управления устраивают обводную линию, которая действует во время пуска системы зимой. Вода с температурой выше 100 °С из теплосети поступает в водоструйный элеватор, где она смешивается с частью обратной воды из местной системы отопления.

Требуемая температура смешанной воды, поступающей в систему, достигается регулированием задвижками у элеватора. Обратная вода, не подмешиваемая к горячей, из системы направляется через водомер в теплоаую сеть. Водомер соединен с тепломером штуцерами.

Водомер устанавливают на обратной линии, в которой теплоноситель имеет более низкую температуру, что обеспечивает нормальные условия его работы.
Чтобы контролировать температуру воды, устанавливают три термометра: до элеватора, после элеватора и на обратной линии.

Давление контролируют тремя манометрами, установленными на одинаковом уровне. Под манометрами расположены трехходовые краны. Потери давления в системе и сопротивление элеватора составляют не менее 8-10 м вод. ст.

Ввод оборудован регулятором, автоматически поддерживающим постоянный расход воды. В отдельных случаях устанавливают также регулятор подпора.

Рис. 1. Узел управления местными системами отопления: 1 -- трехходовой кран, 2 - задвижки, 3 - пробочные краны, 4, 12 - грязевики, 5 - обратный.клапан, 6 - дроссельная шайба, 7 - штуцер для тепломера, 8 - термометр, 9 - манометр, 10 - элеватор, 11 - тепломер, 13 - водомер, 14 - регулятор расхода воды, 15 - регулятор подпора, 16 -. вентили, 17 - обводная линия

Для улавливания грязи, попавшей в сеть, ставят грязевики со спускными пробочными кранами. Для регулирования сопротивления после регулятора устанавливают обратный клапан и дроссельную шайбу.

Автоматизированный узел управления системы отопления является разновидностью индивидуального теплового пункта и предназначен для управления параметрами теплоносителя в системе отопления в зависимости от температуры наружного воздуха и условий эксплуатации зданий.

Узел состоит из корректирующего насоса, электронного регулятора температуры, поддерживающего заданный температурный график и регуляторов перепада давления и расхода. А конструктивно - это смонтированные на металлической опорной раме трубопроводные блоки, включающие насос, регулирующую арматуру, элементы электроприводов и автоматики, контрольно-измерительные приборы, фильтры, грязевики.

цену уточняйте по телефону

Быстрый заказ

×

Быстрый заказ продукции
Автоматизированный узел управления системы отопления

Характеристики

№ тип АУУ Q, Гкал/ч G, т/ч Длина, мм Ширина, мм Высота, мм Вес, кг
1 0,15 3,8 1730 690 1346 410
2 0,30 7,5 1730 710 1346 420
3 0,45 11,25 2020 750 1385 445
4 0,60 15 2020 750 1425 585
5 0,75 18,75 2020 750 1425 590
6 0,90 22,5 2020 800 1425 595
7 1,05 26,25 2020 800 1425 600
8 1,20 30 2500 950 1495 665
9 1,35 33,75 2500 950 1495 665
10 1,50 37,5 2500 950 1495 665

В автоматизированном узле управления системой отопления установлены регулирующие элементы фирмы «Danfoss», насос - фирмы «Grundfoss». Комплектация узлов управления производится с учетом рекомендаций специалистов фирмы «Danfoss», которые оказывают консультационные услуги при разработке данных узлов.

Узел работает следующим образом. При наступлении условий, когда температура в тепловой сети превышает требуемую, электронный регулятор включает насос, а тот добавляет в систему отопления столько охлажденного теплоносителя из обратного трубопровода, сколько необходимо для поддержания заданной температуры. Гидравлический регулятор воды в свою очередь прикрывается, уменьшая подачу сетевой воды.

Режим работы автоматизированного узла управления системой отопления в зимнее время круглосуточный, температура поддерживается в соответствии с температурным графиком с коррекцией по температуре обратной воды.

По желанию заказчика может быть предусмотрен режим снижения температуры в отапливаемых помещениях в ночное время, в выходные и праздничные дни, что дает значительную экономию.

Снижение температуры воздуха в жилых зданиях в ночное время на 2-3°С не ухудшает санитарно-гигиенические условия и в то же время дает экономию в размере 4-5%. В производственных и административно-общественных зданиях экономия теплоты за счет снижения температуры в нерабочее время достигается в еще большей степени. Температура в нерабочее время может поддерживаться на уровне 10-12 °С. Общая экономия тепла при автоматическом регулировании может составить до 25% годового расхода. В летний период автоматизированный узел не работает.

Завод производит выпуск автоматизированных узлов управления системы отопления, их монтаж, наладку, гарантийное и сервисное обслуживание.

Энергосбережение особенно актуально, т.к. именно при внедрении энергоэффективных мероприятий у потребителя достигается максимальная экономия.

Мы всегда открыты для участия в решении Ваших проблем, касающихся нашей тематики и готовы к сотрудничеству с Вами в любой форме, вплоть до выезда на место наших специалистов.

Мы поможем вам разобраться в понятиях, связанных с узлами управления системами отопления и ГВС, а также с условиями и способами использования этих узлов. Ведь неточность терминологии может привести к путанице в определении, например, разрешенного вида работ при капитальном ремонте МКД.

Оборудование узла управления снижает до нормативного уровня расход тепловой энергии при ее поступлении в МКД в повышенном объеме. Единая терминология должна правильно отражать функциональную нагрузку, которую несет такое оборудование. Пока желаемого единства нет. А недоразумения возникают, например, когда замену узла устаревшей конструкции современным автоматизированным называют модернизацией узла. В этом случае устаревший узел не усовершенствуют, то есть не модернизируют, а просто заменяют новым. Замена и модернизация — это самостоятельные виды работ.

Разберемся, что же это такое — автоматизированный узел управления .

Какие бывают узлы управления системами отопления и водоснабжения

К узлам управления каким-либо видом энергии или ресурса относится оборудование, которое направляет эту энергию (или ресурс) к потребителям и регулирует при необходимости ее параметры. К узлу управления тепловой энергией можно отнести даже коллектор в доме, принимающий теплоноситель с необходимыми для системы отопления параметрами и направляющий его к различным ответвлениям этой системы.

В МКД, подключенных к тепловой сети с высокими параметрами теплоносителя (перегретой до 150 °С водой), могут устанавливаться элеваторные узлы, автоматизированные узлы управления. Могут регулироваться и параметры ГВС.

В элеваторном узле параметры теплоносителя (температура и давление) понижаются до заданных значений, то есть осуществляется одна из главных функций управления — регулирование.

В автоматизированном узле управления автоматика с обратной связью регулирует параметры теплоносителя, обеспечивая заданную температуру воздуха в помещении независимо от наружной температуры воздуха, и поддерживает необходимый перепад давлений в подающем и обратном трубопроводах.

Автоматизированные узлы управления системой отопления (АУУ СО) могут быть двух типов.

В АУУ СО первого типа температура теплоносителя приводится к заданным значениям путем смешения воды из подающего и обратного трубопроводов при помощи сетевых насосов, без установки элеватора. Процесс осуществляется автоматически с использованием обратной связи от датчика температуры, установленного в помещении. Также автоматически регулируется давление теплоносителя.

Производители дают автоматизированным узлам такого типа самые разнообразные названия: узел управления теплом, узел погодного регулирования, блок погодного регулирования, смесительный узел погодного регулирования, автоматизированный смесительный узел и т. п.

Тонкость

Регулировка должна быть полной

Некоторые предприятия выпускают автоматизированные узлы, которые регулируют только температуру теплоносителя. Отсутствие регулятора давления может стать причиной аварии.

АУУ СО второго типа имеет в своем составе пластинчатые теплообменники и образует независимую систему отопления. Производители часто называют их тепловыми пунктами. Это не соответствует действительности и вносит путаницу при оформлении заказов.

В системах ГВС МКД могут быть установлены терморегуляторы жидкостные (ТРЖ), которые регулируют температуру воды, автоматизированные узлы управления системой ГВС, обеспечивающие подачу воды заданной температуры по независимой схеме.

Как видим, к узлам управления можно отнести не только автоматизированные узлы. И мнение о том, что устаревшие элеваторные узлы и ТРЖ несовместимы с этим понятием, неверно.

На формирование ошибочного мнения повлияла формулировка в ч. 2 ст. 166 ЖК РФ: «узлы управления и регулирования потребления тепловой энергии, горячей и холодной воды, газа». Ее нельзя назвать корректной. Во-первых, регулирование — это одна из функций управления, и употреблять это слово в приведенном контексте не следовало. Во-вторых, слово «потребления» тоже можно считать избыточным: потребляется и измеряется приборами вся энергия, поступающая в узел. В то же время отсутствует информация о цели, на которую узел управления направляет тепловую энергию. Можно сказать более определенно: узел управления тепловой энергией, расходуемой на отопление (или на ГВС).

Управляя тепловой энергией, мы в конечном счете управляем системами отопления или ГВС. Поэтому будем использовать термины «узел управления системой отопления» и «узел управления системой ГВС».

Автоматизированные узлы — это узлы управления нового поколения. Они отвечают самым современным требованиям, предъявляемым к субъекту управления системами отопления и ГВС, и позволяют поднять технологический уровень этих систем до полной автоматизации процессов регулирования параметров температурного режима воздуха в помещениях и воды в горячем водопроводе, а также автоматизации учета теплопотребления.

Элеваторные узлы и ТРЖ в силу своей конструкции отвечать указанным выше требованиям не могут. Поэтому относим их к узлам управления предыдущего (старого) поколения.

Итак, подведем первые итоги. Существует четыре типа узлов управления системами отопления и ГВС. Выбирая узел управления, выясните, к какому типу он относится.

Можно ли верить названиям

Производители узлов управления, основанных на смешении теплоносителя из подающего и обратного трубопроводов, часто называют свои изделия погодными регуляторами. Это название абсолютно не отражает их свойства и назначение.

Автоматизированный узел управления не регулирует погоду. В зависимости от температуры наружного воздуха, он регулирует температуру теплоносителя. Так в помещении поддерживается заданная температура воздуха. Но то же самое делают автоматизированные узлы с теплообменниками и даже элеваторные узлы (но с меньшей точностью).

Поэтому уточним название: автоматизированный узел (смесительного типа) управления системой отопления. Далее можно добавить его название, присвоенное изготовителем.

Изготовители автоматизированных узлов управления с теплообменниками обычно называют свою продукцию тепловыми пунктами (ТП). Обратимся к нормативным документам.

Чтобы убедиться в некорректности отождествления автоматизированных узлов с ТП, обратимся к СНиП 41-02-2003 и к их актуализированной редакции — СП 124.13330.2012.

СНиП 41-02-2003 «Тепловые сети» рассматривают тепловой пункт как обособленное помещение, удовлетворяющее специальным требованиям, в котором размещается комплект оборудования для присоединения к тепловой сети потребителей тепловой энергии и придания этой энергии заданных параметров по температуре и давлению.

В СП 124.13330.2012 тепловой пункт определен как сооружение с комплектом оборудования, позволяющего изменять тепловой и гидравлический режим теплоносителя, обеспечивать учет и регулирование расхода тепловой энергии и теплоносителя. Это удачное определение ТП, к которому следует добавить функцию присоединения оборудования к тепловой сети.

В Правилах технической эксплуатации тепловых энергоустановок (далее — Правила) ТП — это комплекс устройств, расположенных в обособленном помещении, обеспечивающих присоединение к тепловой сети, управление режимами теплораспределения и регулирования параметров теплоносителя.

Во всех случаях в ТП связывается воедино комплекс оборудования и помещение, в котором оно находится.

СНиП подразделяют тепловые пункты на отдельно стоящие, присоединенные к зданиям и встроенные в здания. В МКД ТП, как правило, встроенные.

Тепловой пункт может быть групповым и индивидуальным — обслуживать одно здание или часть здания.

Теперь сформулируем корректное определение.

Индивидуальный тепловой пункт (ИТП) — это помещение, в котором установлен комплект оборудования для подключения к тепловой сети и подачи потребителям МКД или одной его части теплоносителя с регулированием его теплового и гидравлического режима для придания параметрам теплоносителя заданного значения по температуре и давлению.

В данном определении ИТП главное значение придается помещению, в котором расположено оборудование. Это сделано, во-первых, потому, что такое определение в большей степени соответствует представленному определению в СНиП и СП. Во-вторых, оно предупреждает о некорректности использования понятий ИТП, ТП и тому подобных для обозначения изготавливаемых на различных предприятиях автоматизированных узлов управления системами отопления и горячего водоснабжения.

Уточним и название узла управления рассматриваемого типа: автоматизированный узел (с теплообменниками) управления системой отопления. Изготовители могут указывать собственное наименование изделия.

Как квалифицировать работы с узлом управления

С использованием автоматизаированных узлов управления связаны определенные работы:

  • установка узла управления;
  • ремонт узла управления;
  • замена узла управления на аналогичный;
  • модернизация узла управления;
  • замена узла устаревшей конструкции на узел нового поколения.

Уточним, какой смысл вложен в каждую из перечисленных работ.

Установка узла управления подразумевает его отсутствие и необходимость установки в МКД. Такая ситуация может возникнуть, например, при подключении к одному элеваторному узлу двух и более домов (дома на сцепке) и необходимости установить элеваторный узел на каждом доме для возможности раздельного учета расхода тепловой энергии и повышения ответственности за эксплуатацию всей системы отопления в каждом доме. Устанавливать можно любой узел управления.

Ремонт узла управления инженерными системами обеспечивает устранение физического износа с возможностью частичной ликвидации морального износа.

Замена узла на аналогичный, не имеющий физического износа, предполагает тот же результат, что и при ремонте узла, и может быть произведена вместо ремонта.

Модернизация узла означает его обновление, усовершенствование при полном устранении физического и частично морального износа в пределах существующей конструкции узла. И непосредственное усовершенствование существующего узла, и его замена на усовершенствованный узел — это все разновидности модернизации. Примером служит замена элеваторного узла на аналогичный узел с регулируемым соплом элеватора.

Замена узлов устаревшей конструкции на узлы нового поколения предполагает установку автоматизированных узлов управления системами отопления и ГВС вместо элеваторных узлов и ТРЖ. В этом случае полностью устраняется физический и моральный износ.

Все это самостоятельные виды работ. Это заключение подтверждается ч. 2 ст. 166 ЖК РФ, где в качестве примера самостоятельной работы приведена установка узла управления тепловой энергии.

Для чего нужно определять вид работы

Почему так важно отнесение той или иной работы, связанной с узлами управления, к определенному виду самостоятельной работы? Это имеет принципиальное значение при выполнении выборочного капитального ремонта. Такой ремонт осуществляется из средств фонда капитального ремонта, сформированного за счет обязательных взносов собственников помещений в МКД.

Перечень работ по выборочному капитальному ремонту приведен в ч. 1 ст. 166 ЖК РФ. Указанные выше самостоятельные работы в него не вошли. Однако в ч. 2 ст. 166 ЖК РФ сказано, что субъект РФ может дополнить этот перечень другими работами соответствующим законом. При этом принципиально важным становится соответствие формулировки внесенной в перечень работы характеру планируемого использования узла управления. Проще говоря, если предполагалась модернизация узла, то в перечень должна быть включена работа с точно таким же названием.

Пример

Санкт-Петербург расширил перечень работ по капремонту

В закон Санкт-Петербурга от 11.12.2013 № 690-120 «О капитальном ремонте общего имущества в многоквартирных домах Санкт-Петербурга» была в 2016 году внесена в перечень работ по выборочному капитальному ремонту следующая самостоятельная работа: установка узлов управления и регулирования тепловой энергии, горячей и холодной воды, электрической энергии, газа.

Формулировка полностью заимствована из Жилищного кодекса РФ со всеми неточностями, отмеченными нами ранее. В то же время она со всей определенностью указывает на возможность установки узла управления и регулирования тепловой энергии, т. е. узла управления системой отопления и системой ГВС, при производстве выборочного капитального ремонта, выполняемого в соответствии с данным законом.

Потребность в выполнении такой самостоятельной работы обусловлена желанием разъединить дома на сцепке, т. е. дома, системы отопления которых получают теплоноситель из одного элеваторного узла, и установить на каждом доме собственный узел управления системой отопления.

Внесенная в закон Санкт-Петербурга поправка позволяет установить как простой элеваторный узел, так и любой автоматизированный узел управления инженерными системами. Но она не позволяет, например, производить замену элеваторного узла автоматизированным узлом управления за счет средств фонда капитального ремонта.

Важно!

Автоматизированные узлы смесительного типа, в комплект которых не входит регулятор давления, использовать при высокотемпературных сетях теплоснабжения не рекомендуется. Автоматизированные узлы управления системой ГВС следует устанавливать только с теплообменниками, образующими закрытую систему ГВС.

Выводы

  1. К узлам управления относятся все узлы, направляющие энергоноситель в систему отопления или ГВС с регулированием его параметров, — от устаревших элеваторов и ТРЖ до современных автоматизированных узлов.
  2. Рассматривая предложения изготовителей и поставщиков автоматизированных узлов управления, необходимо за красивыми названиями погодных регуляторов и тепловых пунктов распознать, к какому из указанных ниже типов узлов относится предлагаемое изделие:
  • автоматизированный узел смесительного типа управления системой отопления;
  • автоматизированный узел с теплообменниками управления системой отопления или системой горячего водоснабжения.

После определения типа автоматизированного узла следует детально изучить его назначение, технические характеристики, стоимость изделия и монтажных работ, условия эксплуатации, периодичность ремонта и замены оборудования, величину эксплуатационных затрат и другие факторы.

  1. Принимая решение об использовании атоматизированного узла управления инженерными системами при выборочном капитальном ремонте МКД, необходимо убедиться в том, что выбранный вид самостоятельной работы по установке, ремонту, модернизации или замене узла управления в точности соответствует наименованию работы, внесенной законом субъекта РФ в перечень работ по капитальному ремонту МКД. В противном случае выбранный вид работы по использованию узла управления оплачиваться за счет средств фонда капитального ремонта не будет.

Автоматизированный узел управления системы отопления является разновидностью индивидуального теплового пункта и предназначен для управления параметрами теплоносителя в системе отопления в зависимости от температуры наружного воздуха и условий эксплуатации зданий.

Узел состоит из корректирующего насоса, электронного регулятора температуры, поддерживающего заданный температурный график и регуляторов перепада давления и расхода. А конструктивно – это смонтированные на металлической опорной раме трубопроводные блоки, включающие насос, регулирующую арматуру, элементы электроприводов и автоматики, контрольно-измерительные приборы, фильтры, грязевики.

В автоматизированном узле управления системой отопления установлены регулирующие элементы фирмы «Danfoss», насос - фирмы «Grundfoss». Комплектация узлов управления производится с учетом рекомендаций специалистов фирмы «Danfoss», которые оказывают консультационные услуги при разработке данных узлов.

Узел работает следующим образом. При наступлении условий, когда температура в тепловой сети превышает требуемую, электронный регулятор включает насос, а тот добавляет в систему отопления столько охлажденного теплоносителя из обратного трубопровода, сколько необходимо для поддержания заданной температуры. Гидравлический регулятор воды в свою очередь прикрывается, уменьшая подачу сетевой воды.

Режим работы автоматизированного узла управления системой отопления в зимнее время круглосуточный, температура поддерживается в соответствии с температурным графиком с коррекцией по температуре обратной воды.

По желанию заказчика может быть предусмотрен режим снижения температуры в отапливаемых помещениях в ночное время, в выходные и праздничные дни, что дает значительную экономию.

Снижение температуры воздуха в жилых зданиях в ночное время на 2-3°С не ухудшает санитарно-гигиенические условия и в то же время дает экономию в размере 4-5 %. В производственных и административно-общественных зданиях экономия теплоты за счет снижения температуры в нерабочее время достигается в еще большей степени. Температура в нерабочее время может поддерживаться на уровне 10-12 °С. Общая экономия тепла при автоматическом регулировании может составить до 25% годового расхода. В летний период автоматизированный узел не работает.

Перспективным подходом к разрешению сло­жившейся ситуации служит ввод в эксплуатацию ав­томатизированных тепловых пунктов с коммерческим узлом учета тепла, который отражает фактическое потребление тепловой энергии потребителем и по­зволяет отслеживать текущее и суммарное потребление тепла за заданный промежуток времени.

Целевая аудитория, решения:

Ввод в эксплуатацию автоматизированных тепловых пунктов с коммерческим узлом учета тепла позволяет решать следующие задачи:

АО «Энерго»:

  1. повышенная надежность работы оборудования, как следствие снижение аварий и средств на их устранение;
  2. точность регулировки теплосети;
  3. снижение затрат на водоподготовку;
  4. уменьшение ремонтных участков;
  5. высокая степень диспетчеризации и архивирования.

ЖКХ, муниципальное управляющее предприятие (МУП), управляющая компания (УК):

  • отсутствие необходимости постоянного сантехнического и операторского вмешательства в рабо­ту теплового пункта;
  • уменьшение обслуживающего персонала;
  • плата за реально потребленную тепловую энергию без потерь;
  • снижение потерь на подпитку системы;
  • высвобождение свободных площадей;
  • долговечность и высокая ремонтопригодность;
  • комфорт и легкость управления тепловой нагрузкой. Проектные организации:
  • строгое соответствие техническому заданию;
  • широкий выбор схемных решений;
  • высокая степень автоматизации;
  • большой выбор комплектации тепловых пунктов инженерным оборудованием;
  • высокая энергоэффективность. Промышленные предприятия:
  • высокая степень резервирования, особенно важна при непрерывных технологических процессах;
  • учет и точное соблюдение высокотехнологичных процессов;
  • возможность использования конденсата при наличии технологического пара;
  • регулирование температуры по цехам;
  • регулируемый отбор горячей воды и пара;
  • снижение подпитки и т.д.

Описание

Тепловые пункты подразделяются на:

  1. индивидуальные тепловые пункты (ИТП), служащие для присоединения систем отопления, вен­тиляции, горячего водоснабжения и технологических теплоиспользующих установок одного зда­ния или его части;
  2. центральные тепловые пункты (ЦТП) выполняющие те же функции что и ИТП для двух зданий или более.

Одним из приоритетных направлений деятельности компании ЗАО «ТеплоКомплектМонтаж» является изготовление блочных автоматизированных тепловых пунктов с применением современных технологий , оборудования и материалов.

Все более широкое применение находят тепловые пункты, изготавливаемые на единой раме в модульном исполнении высокой заводской готовности называемые блочными, далее БТП. БТП представляют собой законченное заводское изделие, предназначенное для передачи тепловой энергии от ТЭЦ или котельной к системе отопления, вентиляции и горячего водоснабжения. В состав БТП входит следующее оборудование: теплообменники, контроллер (щит электроуправле­ния), регуляторы прямого действия, управляющие клапаны с электроприводом, насосы, кон­трольно-измерительные приборы (КИП), запорная арматура и др. КИП и датчики обеспечивают измерение и контроль параметров теплоносителя и выдают сигналы на контроллер о выходе па­раметров за пределы допустимых значений. Контроллер позволяет управлять следующими сис­темами БТП в автоматическом и в ручном режиме:

Регулирования расхода, температуры и давления теплоносителя из тепловой сети согласно техническим условиям теплоснабжения;

Регулирования температуры теплоносителя, подаваемого в систему отопления, с учетом температуры наружного воздуха, времени суток и рабочего дня;

Подогрева воды на ГВС и поддержания температуры в пределах санитарных норм;

Защиты контуров системы отопления и ГВС от опорожнения при плановых остановах на ре монт или авариях в сетях;

Аккумулирования воды ГВС, позволяющей компенсировать пик потребления в часы макси­мальной нагрузки;

  1. частотного регулирования привода насосами и защиты от «сухого хода»;
  2. контроля, оповещения и архивирования нештатных ситуаций и др.

Исполнение БТП варьируется в зависимости от применяемых в каждом отдельном случае схем присоединения систем теплопотребления, типа системы теплоснабжения, а также конкрет­ных технических условий проекта и пожеланий заказчика.

Схемы присоединений БТП к тепловым сетям

На рис. 1-3 представлены наиболее распространенные схемы присоединения тепловых пунк­тов к тепловым сетям.






Применение кожухотрубных или пластинчатых теплообменников в БТП?

В тепловых пунктах большинства зданий, как правило, установлены кожухотрубные теплооб­менники и гидравлические регуляторы прямого действия. В большинстве случаев, это оборудова­ние выработало свой ресурс, а также функционирует в режимах не соответствующих расчетным. Последнее обстоятельство вызвано тем, что фактические тепловые нагрузки в настоящее время поддерживаются на уровне существенно ниже проектного. Регулирующая аппаратура при значи­тельных отклонениях от расчетного режима своих функций не выполняет.

При реконструкции систем теплоснабжения, рекомендуется применять современное оборудо­вание, отличающееся компактностью, предусматривающее работу в полностью автоматическом режиме и обеспечивающее экономию до 30% энергии, по сравнению с оборудованием, применяв­шимся в 60-70 гг. В современных тепловых пунктах обычно используется независимая схема под­ключения систем отопления и горячего водоснабжения, выполненная на базе пластинчатых теп­лообменников. Для управления тепловыми процессами используются электронные регуляторы и специализированные контроллеры. Современные пластинчатые теплообменники в несколько раз легче и меньше, чем кожухотрубные соответствующей мощности. Компактность и малый вес пла­стинчатых теплообменников значительно облегчают монтаж, обслуживание и текущий ремонт оборудования теплового пункта.

Рекомендации по подбору кожухотрубных и пластинчатых теплообменников приведены в СП 41-101-95. Проектирование тепловых пунктов. В основе расчета пластинчатых теплообменников лежит система критериальных уравнений. Однако, прежде чем приступить к расчету теплообменника, необходимо рассчитать оптимальное распределение нагрузки ГВС между ступенями подогревателей и температурный режим каждой ступени с учетом метода регулирования отпуска тепла от теплоисточника и схем присоединения подогревателей ГВС.

Компания ЗАО «ТеплоКомплектМонтаж» имеет собственную апробированную программу теплового и гидравлического расчета, позволяющую подбирать пластинчатые паяные и разборные теплообменники Funke, которые полностью удовлетворяют требования заказчика.

БТП производства ЗАО «ТеплоКомплектМонтаж»

Основу БТП ЗАО «ТеплоКомплектМонтаж» составляют разборные пластинчатые теплообменники Funke, которые отлично зарекомендовали себя в жестких российских условиях. Они надежны, просты в обслуживании и долговечны. В качестве узла коммерческого учета тепла используются теплосчетчики, имеющие интерфейсный выход на верхний уровень управления и позволяющие считывать потребленное количество теплоты. Для поддержания заданной температуры в системе горячего водоснабжения, а также регулирования температуры теплоносителя в системе отопления применяется двухконтурный регулятор. Управление работой насосов, сбор данных с теплосчетчика, управление регулятором, контроль за общим состоянием БТП, связь с верхним уровнем управления (диспетчеризация) берет на себя контроллер, который совместим с персональным компьютером.

Регулятор имеет два независимых контура регулирования температуры теплоносителей. Один обеспечивает регулирование температуры в системе отопления в зависимости от графика, учитывающего температуру наружного воздуха, время суток, день недели и др. Другой поддер­живает установленную температуру в системе горячего водоснабжения. Работать с прибором можно как локально, используя встроенную клавиатуру и панель индикации, так и дистанционно по интерфейсной линии связи.

Контроллер имеет несколько дискретных входов и выходов. На дискретные входы подаются сигналы от датчиков по работе насосов, проникновению в помещение бТп, по пожару, затопле­нию и т.п. Вся эта информация доставляется на верхний диспетчерский уровень. Через дискрет­ные выходы контроллера осуществляется управление работой насосов и регуляторов по любым алгоритмам пользователя, задаваемых на этапе проектирования. Имеется возможность менять данные алгоритмы с верхнего уровня управления.

Контроллер может быть запрограммирован для работы с теплосчетчиком, выдавая данные о теплопотреблении в диспетчерский пункт. Через него же осуществляется связь с регулятором. Все приборы и коммуникационное оборудование монтируются в небольшом шкафу управления. Его размещение определяется на этапе проектирования.

В подавляющем большинстве случаев, при реконструкции старых систем теплоснабжения и создании новых, целесообразно применять именно БТП. БТП, будучи собраны и испытаны в заво­дских условиях, отличаются надежностью. Монтаж оборудования упрощается и удешевляется, что, в конечном счете, снижает полную стоимость реконструкции или нового строительства. Каж­дый проект БТП ЗАО «ТеплоКомплектМонтаж» является индивидуальным и учитывает все особенности теплового пункта заказчика: структуру теплового потребления, гидравлическое сопротивление, схемные решения тепловых пунктов, допустимые потери давления в теплообменниках, размеры помещения, качество водопроводной воды и многое другое.

Виды деятельности ЗАО «ТеплоКомплектМонтаж» в области БТП

ЗАО «ТеплоКомплектМонтаж» выполняет следующие виды работ в области БТП:

  1. составление технического задания на проект БТП;
  2. проектирование БТП;
  3. согласование технических решений по проектам БТП;
  4. инженерная поддержка и сопровождение проекта;
  5. подбор оптимального варианта оборудования и автоматизации БТП, с учетом всех требований заказчика;
  6. монтаж БТП;
  7. проведение пусконаладочных работ;
  8. сдача теплового пункта в эксплуатацию;
  9. гарантийное и послегарантийное обслуживание теплового пункта.

ЗАО «ТеплоКомплектМонтаж» успешно разрабатывает энергоэффективные системы теплоснабжения, инженерные системы, а также занимается проектированием, монтажом, реконструкцией, автоматизацией, проводит гарантийное и послегарантийное обслуживание БТП. Гибкая система скидок и широкий выбор комплектующих выгодно отличают БТП ЗАО «ТеплоКомплектМонтаж» от других. БТП ЗАО «ТеплоКомплектМонтаж» - это путь снижения затрат на энергоносители и обеспечение максимального комфорта.

С уважением, ЗАО
«ТеплоКомплектМонтаж»

Доля расходов на отопление является преобладающей в коммунальных платежах на всей территории нашей страны. При этом в северных районах, а также там, где в качестве топлива используется привозной мазут, тепловая энергия стоит особенно дорого. По этой причине вопрос экономного потребления и разумного расходования тепловой энергии является на сегодняшний день одним из самых актуальных.
Как известно, экономия начинается с учета. Сегодня практически повсеместно установлены счетчики тепловой энергии, поступающей в многоквартирный дом. Статистические данные свидетельствуют, что эта простая мера позволила сократить расходы на отопление на 20, а порой и на 30%. Но этого недостаточно, нужно двигаться дальше и вектор этого движения должен быть направлен в сторону поквартирного учета тепла и снижения потребления энергии в зависимости от уменьшения потребностей в ней.
Для этого потребуется провести реконструкцию элеваторного ввода и установить узел управления системой обеспечения тепла с автоматическим регулированием его работы в зависимости от температуры наружного воздуха. Также необходима установка насосов с частотным регулированием их работы. Наиболее эффективной система будет при установке на каждый радиатор отопления датчика регулировки температуры и счетчика учета потребления тепловой энергии.
Разумеется, для этого потребуются денежные средства, которые, по предварительным расчетам, должны окупиться в течение двух лет эксплуатации системы. Можно воспользоваться средствами из федеральной программы повышения эффективности использования энергетических ресурсов, взять кредит и погасить его за счет ежемесячных поступлений денег от жильцов, выделив отдельно графу расходов на реконструкцию системы отопления. Можно просто "скинуться" и тем самым прекратить выбрасывать собственные деньги в окружающую среду вместе с нерационально используемой тепловой энергией.
Главное, это понять, что существующая сегодня система отопления, особенно в период межсезонья, подобно костру, разведенному на балконе: греет, только не то, что нужно.

Идеальный вариант
Идеальным вариантом отопительной системы для потребителя является тепловая сеть, автоматически поддерживающая заданный температурный режим в каждой комнате. При этом для жильцов мотивацией ее установки и использования должны стать не только комфортные условия проживания (регулировать температуру можно просто, открыв балконную дверь или окно на улицу), но и снижение платы за отопление.
Для этого нужна поквартирная система учета потребления тепловой энергии. Сбытовые компании настаивают, что в нашей стране с ее традиционной вертикальной разводкой системы отопления, установить счетчик тепла на каждую квартиру невозможно, но при этом упускается из виду (или просто нет желания это видеть и принимать во внимание), что счетчики тепла можно установить на каждый радиатор отопления, при этом не меняя двухтрубную или однотрубную вертикальную разводку тепла на горизонтальную.
При расчете за тепло достаточно суммировать показания всех счетчиков. С этим справится даже ученик начальной школы.
Индивидуальный учет тепловой энергии позволит осознанно экономить тепло, прекращаю его подачу в те помещения, где временно никто не живет или просто предпочитая находиться в прохладной комнате. Для этого можно перекрывать краны, установленные на каждом радиаторе.
Но есть и другой способ регулирования расхода тепла: использование радиаторного терморегулятора, состоящего из клапана и термостатической головки. Принцип действия системы прост: движением врезанного в трубу клапана, управляет термостатическая головка, реагирующая на изменение температуры в помещении: жарко, клапан перекрывает трубу, холодно, наоборот, открывает. При этом с помощью ручного регулирования можно настроить устройство по своему желанию: любите, чтобы было жарко, поставьте максимальную температуру на регуляторе, которую хотите получить в помещении.
Есть терморегуляторы, с помощью которых можно регулировать температуру в помещении в зависимости от времени суток: днем дома никого нет, отопление можно выключить, вечером включить.
Казалось бы все просто: счетчики можно установить в каждой квартире, количество тепловой энергии можно увеличивать или уменьшать, а плату за отопление можно экономить. Но при этом упускается из виду система регулирования распределения тепловой энергии по всему дому, то есть традиционный элеваторный ввод.

Принцип работы гидроэлеватора
В гидроэлеватор подается теплоноситель из магистрального трубопровода. Его давление регулируется с помощью обычной задвижки. При этом температура сетевой воды столь высока, что подавать ее напрямую потребителям нельзя, поэтому сетевую воду в гидроэлеваторе смешивают с уже остывшей обраткой.
Если теплоноситель совершит цикл движения по отопительной системе и при этом не расходует запас тепловой энергии, что произойдет непременно при выключенных отопительных приборах, в элеватор поступит горячая вода из сети и горячая вода из обратного трубопровода.
Гидроэлеватор не имеет обратной связи с магистральным трубопроводом и не может уменьшать давление сетевой воды. В результате потребителям, у которых отопительные приборы не перекрыты и работают на полную мощь, будет направлена слишком горячая вода, что приведет к порче оборудования.
При этом прибор учета тепловой энергии уменьшение потребления тепла не зафиксирует, а сбытовая компания отметит перегрев и выставит штрафные санкции. Выходит, что все усилия по сокращению расходов на отопление предпринимались зря.

Что делать
Нужен тепловой пункт с автоматической системой регулирования подачи сетевой воды


1. Гидроэлеватор
2. Электрический привод
3. Система управления
4. Датчик температуры
5. Датчик температуры теплоносителя в подающем трубопроводе
6. Датчик температуры теплоносителя в обратном трубопроводе

В нем используется теплообменник, в котором смешивается сетевая вода и вода из магистрального трубопровода. В отопительную систему подается именно эта "смесь". Ее температура измеряется и при превышении допустимого значения перекрывается подача магистральной воды, что ведет к уменьшению расхода тепловой энергии.
В итоге потреблением тепловой энергии можно управлять.