Вольт амперная характеристика диода д. Выпрямительный диод

Широкое применение в области электроники получили полупроводниковые элементы, одним из которых является диод. Они используются практически во всех устройствах, но чаще - в различных блоках питания и для обеспечения электробезопасности. Каждый из них имеет свое конкретное предназначение и технические характеристики. Для выявления различного рода неисправностей и получения технических сведений нужно знать ВАХ диода.

Общие сведения

Диод (Д) - полупроводниковый элемент , служащий для пропускания тока через p-n-переход только в одном направлении. При помощи Д можно выпрямлять переменное U, получая из него постоянное пульсирующее. Для сглаживания пульсаций применяют фильтры конденсаторного или индуктивного типа, а иногда их и комбинируют.

Д состоит только из p-n-перехода с выводами, которые называются анодом (+) и катодом (-). Ток, при прохождении через проводник, оказывает на него тепловое действие. При нагреве катод испускает отрицательно заряженные частицы - электроны (Э). Анод притягивает электроны, так как обладает положительным зарядом. В процессе образуется эмиссионное поле, при котором возникает ток (эмиссионный). Между (+) и (-) происходит генерация пространственного отрицательного заряда, мешающего свободному движению Э. Э, достигшие анода, образуют анодный ток, а не достигшие - катодный. Если анодный и катодный токи равны нулю, Д находится в закрытом состоянии.

Д состоит из корпуса, изготавливаемого из прочного диэлектрического материала. В корпусе находится вакуумное пространство с 2 электродами (анод и катод). Электроды, представляющие металл с активным слоем, обладают косвенным накалом. Активный слой при нагревании испускает электроны. Катод устроен таким образом, что внутри его находится проволока, которая накаливается и испускает электроны, а анод служит для их приема.

В некоторых источниках анод и катод называют кристаллом, который изготавливается из кремния (Si) или германия (Ge). Одна из его составных частей имеет искусственный недостаток электронов, а другая - избыток (рис. 1). Между этими кристаллами существует граница, которая называется p-n-переходом.

Рисунок 1 - Схематическое изображение полупроводника p-n-типа.

Сферы применения

Д широко применяется в качестве выпрямителя переменного U в построении блоков питания (БП), диодных мостов, а также в виде одиночного элемента конкретной схемы. Д способен защитить цепь от несоблюдения полярности подключения источника питания. В цепи может произойти пробой какой-либо полупроводниковой детали (например, транзистора) и повлечь за собой процесс выхода из строя цепочки радиоэлементов. При этом применяется цепочка из нескольких Д, подключенных в обратном направлении. На основе полупроводников создаются переключатели для коммутации высокочастотных сигналов.

Д применяются в угольной и металлургической промышленностях, особенно при создании искробезопасных цепей коммутации в виде диодных барьеров, ограничивающих U в необходимой электрической цепи. Диодные барьеры применяются вместе с ограничителями тока (резисторами) для уменьшения значений I и повышения степени защиты, а следовательно, электробезопасности и пожаробезопасности предприятия.

Вольт-амперная характеристика

ВАХ - это характеристика полупроводникового элемента, показывающая зависимость I, проходящего через p-n-переход, от величины и полярности U (рис. 1).

Рисунок 1 - Пример вольт-амперной характеристики полупроводникового диода.

ВАХ отличаются между собой и это зависит от типа полупроводникового прибора. Графиком ВАХ является кривая, по вертикали которой отмечены значения прямого I (вверху). Внизу отмечены значения I при обратном подключении. По горизонтали указаны показания U при прямом и обратном включении. Схема состоит из 2 частей:

  1. Верхняя и правая - Д функционирует в прямом подключении. Показывает пропускной I и линия идет вверх, что свидетельствует о росте прямого U (Uпр).
  2. Нижняя часть слева - Д находится в закрытом состоянии. Линия идет практически параллельно оси и свидетельствует о медленном нарастании Iобр (обратного тока).

Из графика можно сделать вывод: чем круче вертикальная часть графика (1 часть), тем ближе нижняя линия к горизонтальной оси. Это свидетельствует о высоких выпрямительных свойствах полупроводникового прибора. Необходимо учитывать, что ВАХ зависит от температуры окружающей среды, при понижении температуры происходит резкое понижение Iобр. Если температура повышается, то повышается и Iобр.

Построение графика

Построить ВАХ для конкретного типа полупроводникового прибора несложно. Для этого необходимы блок питания, мультиметр (вольтметр и амперметр) и диод (можно построить для любого полупроводникового прибора). Алгоритм построения ВАХ следующий:

  1. Подключить БП к диоду.
  2. Произвести измерения U и I.
  3. Внести данные в таблицу.
  4. На основании табличных данных построить график зависимости I от U (рис. 2).

Рисунок 2 - Пример нелинейной ВАХ диода.

ВАХ будет различна для каждого полупроводника. Например, одним из самых распространенных полупроводников является диод Шоттки, названный немецким физиком В. Шоттки (рисунок 3).

Рисунок 3 - ВАХ Шоттки.

Исходя из графика, носящего асимметричный характер, видно, что для этого типа диода характерно малое падение U при прямом подключении. Присутствует экспоненциальное увеличение I и U. Ток в барьере обусловлен отрицательно заряженными частицами при обратном и прямом смещениях. Шоттки обладают высоким быстродействием, так как диффузные и рекомбинационные процессы отсутствуют. I зависит от U благодаря изменению количества носителей, принимающих участие в процессах переноса заряда.

Кремниевый полупроводник широко применяется практически во всех электрических схемах устройств. На рисунке 4 изображена его ВАХ.

Рисунок 4 - ВАХ кремниевого Д.

На рисунке 4 ВАХ начинается с 0,6-0,8 В. Кроме кремниевых Д существуют еще германиевые, которые при нормальной температуре будут нормально работать. Кремниевый имеет меньший Iпр и Iобр, поэтому тепловой необратимый пробой у германиевого Д наступает быстрее (при подаче высокого Uобр), чем у его конкурента.

Выпрямительный Д применяется для преобразования переменного U в постоянное и на рисунке 5 приведена его ВАХ.

Рисунок 5 - ВАХ выпрямительного Д.

На рисунке изображена теоретическая (пунктирная кривая) и практическая (экспериментальная) ВАХ. Они не совпадают из-за того, что в теории не учитывались некоторые аспекты:

  1. Наличие R (сопротивления) эмиттерной области кристалла, выводов и контактов.
  2. Токи утечки.
  3. Процессы генерации и рекомбинации.
  4. Пробои различных типов.

Кроме того, температура окружающей среды значительно влияет на измерения, и ВАХ не совпадают, так как теоретические значения получают при температуре +20 градусов. Существуют и другие важные характеристики полупроводников, которые можно понять по маркировке на корпусе.

Существуют и дополнительные характеристики. Они нужны для применения Д в определенной схеме с U и I. Если использовать маломощный Д в устройствах с U, превышающем максимально допустимое Uобр, то произойдет пробой и выход из строя элемента, а также это может повлечь за собой цепочку выхода других деталей из строя.

Дополнительные характеристики: максимальные значения Iобр и Uобр; прямые значения I и U; ток перегрузки; максимальная температура; рабочая температура и так далее.

ВАХ помогает определить такие сложные неисправности Д: пробой перехода и разгерметизация корпуса. Сложные неисправности могут привести к выходу из строя дорогостоящих деталей, следовательно, перед монтажом Д на плату необходимо его проверить.

Возможные неисправности

Согласно статистике, Д или другие полупроводниковые элементы выходят из строя чаще, чем другие элементы схемы. Неисправный элемент можно вычислить и заменить, но иногда это приводит к потере функциональности. Например, при пробое p-n-перехода, Д превращается в обыкновенный резистор, а такая трансформация может привести к печальным последствиям, начиная от выхода из строя других элементов и заканчивая пожаром или поражением электрическим током. К основным неисправностям относятся :

  1. Пробой. Диод утрачивает способность пропускать ток в одном направлении и становится обычным резистором.
  2. Конструктивное повреждение.
  3. Утечка.

При пробое Д не пропускает ток в одном направлении. Причин может быть несколько и возникают они при резких ростах I и U, которые являются недопустимыми значениями для определенного Д. Основные виды пробоев p-n-перехода:

  1. Тепловой.
  2. Электрический.

При тепловом на физическом уровне происходит значительный рост колебания атомов, деформация кристаллической решетки, перегрев перехода и попадание электронов в проводимую зону. Процесс необратим и приводит к повреждению радиодетали.

Электрические пробои носят временный характер (кристалл не деформируется) и при возвращении к нормальному режиму работы его функции полупроводника возвращаются. Конструктивным повреждением являются физические повреждения ножек и корпуса. Утечка тока возникает при разгерметизации корпуса.

Для проверки Д достаточно выпаять одну ножку и прозвонить его мультиметром или омметром на наличияе пробоя перехода (должен звониться только в одном направлении). В результате появится значение R p-n-перехода в одном направлении, а в другом прибор покажет бесконечность. Если звониться в 2 направления, то радиодеталь неисправна.

Если отпала ножка, то ее нужно припаять. При повреждении корпуса - деталь необходимо заменить на исправную.

При разгерметизации корпуса понадобится построение графика ВАХ и сравнение его с теоретическим значением, взятым из справочной литературы.

Таким образом, ВАХ позволяет не только получить справочные данные о диоде или любом полупроводниковом элементе, но и выявить сложные неисправности, которые невозможно определить при проверке прибором.

Вольт-амперная характеристика (ВАХ) - зависимость тока, протекающего через сопротивление, от напряжения на этом сопротивлении, выраженная графически. ВАХ могут быть линейными и нелинейными, и в зависимости от этого сопротивления и цепи, содержащие данные сопротивления, разделяются на линейные и нелинейные.

Итак, вольтамперная характеристика - зависимость электрического напряжения от силы тока в электрической цепи или её отдельных элементах (реостате, конденсаторе и др.). У линейных элементов электрической цепи вольтамперная характеристика - прямая линия.

При повышении напряжения, приложенного к полупроводнику, величина тока в нем возрастает значительно быстрее напряжения (рис. 1), т. е. наблюдается нелинейная зависимость между током и напряжением. Если при перемене напряжения U на обратное (-U) изменение тока в полупроводнике имеет такой же характер, но в обратном направлении, то такой полупроводник обладает симметричной вольтамперной характеристикой .

В подбором полупроводников с разного типа электропроводностью (n-типа и р-типа) добиваются несимметричной вольтамперной характеристики (рис. 2).

В результате этого при одной полуволне переменного напряжения полупроводниковый выпрямитель будет пропускать ток. Это ток, протекающий в прямом направлении Iпр, который быстро возрастает с повышением первой полуволны переменного напряжения.

При воздействии же второй полуволны напряжения система двух полупроводников (в плоскостном выпрямителе) не пропускает тока в обратном направлении Iобр. Очень незначительная величина тока Iобр протекает через р-n-переход вследствие наличия в полупроводниках неосновных носителей тока (электронов в полупроводнике р-типа и дырок в полупроводнике n-типа). Причиной этого является большое сопротивление переходного слоя (р-n-переход), возникающего между полупроводником р-типа и полупроводником n-типа.

С дальнейшим повышением второй полуволны переменного напряжения обратный ток Iобр начнет медленно возрастать и может достигнуть значений, при которых наступит пробой запорного слоя (р-n-перехода).

Рис. 1. Вольт-амперная характеристика полупроводника

Рис. 2. Несимметричная вольтамперная характеристика полупроводникового выпрямителя (плоскостной диод)

Чем больше отношение величины прямого тока к величине обратного тока (измеренных при одинаковых значениях напряжения), тем лучше свойства выпрямителя. Это оценивается величиной коэффициента выпрямления, представляющего собой отношение прямого тока I’пр к обратному I’обр при одной и той же величине напряжения:

Полупроводниковым диодом называют электропреобразовательный полупроводниковый прибор с одним выпрямляющим электрическим переходом, имеющим два вывода. В качестве выпрямляющего электрического перехода используется электронно-дырочный (р-n) переход (П), разделяющий р- и n-области кристалла полупроводника (рис. 10.2).

К р- и n-области кристалла привариваются или припаиваются металлические выводы, и вся система заключается в металлический, металлокерамический, стеклянный или пластмассовый корпус.

По конструктивному выполнению различают точечные и плоскостные диоды. Широкое применение диоды получили в источниках вторичного электропитания (выпрямителях).

Одна из полупроводниковых областей кристалла, имеющая более высокую концентрацию примесей (а следовательно, и основных носителей заряда), называется эмиттером, а вторая, с меньшей концентрацией - базой. Если эмиттером является p-область, для которой основными носителями заряда служат дырки p p , а базой n-область (основные носители заряда - электроны n n), то выполняется условие p p ≥n n .

p p - обозначение дырок в p-области; тогда обозначение дырок в n-области, для которой они являются неосновными носителями зарядов, будет соответственно p n .

Принцип работы. При отсутствии внешнего напряжения, приложенного к выводам диода, в результате встречной диффузии дырок (из р- в n-область) и электронов (из n- в р-область) в объеме полупроводникового кристалла, расположенного вблизи границы раздела двух областей с различной проводимостью, окажутся некомпенсированными заряды неподвижных ионов примесей (акцепторов для р-области и доноров для n-области), которые по обе стороны раздела полупроводникового кристалла создадут область объемного заряда (рис. 10.2). Для сохранения электрической нейтральности полупроводниковой структуры количество диффундируемых через р-n-переход основных носителей заряда из одной области должно равняться количеству диффундируемых основных носителей заряда из другой области. С учетом того, что концентрация электронов n n в базе значительно меньше концентрации дырок p p в эмиттере, область объемного заряда со стороны базы будет больше, чем со стороны эмиттера, как это показано на рис. 10.2. Образованный в результате встречной диффузии объемный заряд создает напряженность E зар электрического поля, препятствующего дальнейшей встречной диффузии основных носителей зарядов.

Рис. 10.2. Схема включения полупроводникового диода и пространственное распределение объемных зарядов р-n-перехода в отсутствие внешнего напряжения

Диффузия практически прекращается, когда энергия носителей заряд недостаточна, чтобы преодолеть созданный потенциальный барьер .

Если к выводам диода приложить прямое напряжение, как это показано на рис. 10.2, то создаваемая им напряженность Е электрического поля будет противоположна направлению напряженности E зар объемного заряда и в область базы (по мере возрастания напряжения U) будет вводиться (инжектировать) все большее количество дырок, являющихся не основными для n-области базы носителями заряда, которые и образуют прямой ток диода I. Встречной инжекцией n n в область эмиттера можно пренебречь, учитывая, что p p ≥n n .

Если к выводам диода приложить обратное напряжение (-U), то создаваемая им напряженность (-Е) электрического поля, совпадая по направлению с напряженностью E зар объемного заряда, повышает потенциальный барьер и препятствует переходу основных носителей заряда в соседнюю область. Однако суммарная напряжеяностъ электрических полей способствует извлечению (экстракции) неосновных носителей заряда: n p - из р- в n-область и p n - из n- в р-область, которые и образуют обратный ток p-n-перехода. Количество неосновных носителей заряда значительно изменяется при изменении температуры, возрастая с ее повышением. Поэтому обратный ток, образованный за счет неосновных носителей, называют тепловым током (I 0).

Вольт-амперная характеристика (ВАХ) диода имеет вид, приведенный на рис. 10.3 (сплошная линия), и описывается выражением

(10.1)

где U Д - напряжение на р-n-переходе;

k - постоянная Больцмана; T - абсолютная температура; q - заряд электрона. Выражение (10.1) соответствует ВАХ идеального р-n-перехода и не отражает некоторых свойств реального диода.

При определенном значении напряжения U обр начинается лавинообразный процесс нарастания тока I обр, соответствующий электрическому пробою р-n-перехода (отрезок АВ на рис. 10.3). Если в этот момент ток не ограничить, электрический пробой переходит в тепловой (участок ВАХ после точки В). Такая последовательность лавинообразного процесса нарастания тока I обр характерна для кремниевых диодов. Для германиевых диодов с увеличением обратного напряжения тепловой пробой р-n-перехода наступает практически одновременно с началом лавинообразного процесса нарастания тока I обр. Электрический пробой обратим, т. е. после уменьшения напряжения U обр работа диода соответствует пологому участку обратной ветви ВАХ. Тепловой пробой необратим, так как разрушает р-n-переход.

Прямой ток диода также зависит от температуры окружающей среды, возрастая с ее повышением, хотя и в значительно меньшей степени, чем обратный ток. Характер изменения прямой ветви ВАХ при изменении температуры показан на рис. 10.3. Для оценки температурной зависимости прямой ветви ВАХ диода служит температурный коэффициент напряжения (ТКН), °K -1 .

Этот коэффициент показывает относительное изменение прямого напряжения за счет изменения температуры на 1 ̊К при некотором значении прямого тока.

Рис. 10.3. Вольт-амперные характеристики полупроводникового диода

Сопротивления и емкости диода. Полупроводниковый диод характеризуется статическим и дифференциальным (динамическим) сопротивлениями, легко определяемыми по ВАХ. Дифференциальное сопротивление численно равно отношению бесконечно малого приращения напряжения к соответствующему приращению тока в заданном режиме работы диода и может быть определено графически как тангенс угла наклона касательной в рассматриваемой рабочей точке Е к оси абсцисс (см. рис. 10.3):

(10.2)

где ∆U и ∆I- конечные приращения напряжения и тока вблизи рабочей точки Е; mI и mU - масштабы осей тока и напряжения.

Часто представляют интерес не приращения напряжения и тока в окрестности некоторой заданной точки, а сами напряжение и ток в данном элементе. При этом совершенно безразлично, какова характеристика диода вблизи выбранной рабочей точки. В этом случае удобно пользоваться статическим сопротивлением, которое равно отношению напряжения на элементе U E к протекающему через него току I E (рис. 10.3). Как видно из рисунка, это сопротивление равно тангенсу угла наклона прямой, проведенной из начала координат через заданную рабочую точку ВАХ, к оси абсцисс:

В зависимости от того, на каком участке ВАХ расположена заданная рабочая точка, значение R ст, может быть меньше или больше значения R диф или равно ему. Однако R ст всегда положительно, в то время как R диф может быть и отрицательным. У элементов, имеющих линейные ВАХ, статическое и дифференциальное сопротивления равны.

При работе на высоких частотах и в импульсных режимах начинает играть роль емкость диода С Д, измеряемая между выводами диода при заданных значениях напряжения и частоты. Эта емкость включает диффузионную емкость С диф, зарядную (барьерную) емкость С зар и емкость С к корпуса диода:

Диффузионная емкость возникает при прямом напряжении диода в приконтактном слое р-n-перехода за счет изменения количества диффундируемых дырок и электронов при изменении прямого напряжения. Зарядная емкость возникает при обратном напряжении и обусловлена изменением объемного заряда.

Значение емкости С Д определяется режимом работы диода. При прямом напряжении

при обратном напряжении

Классификация диодов представлена в табл. 10.1.

Таблица 10.1 Классификация диодов

Рассмотрим некоторые из них, наиболее широко применяемые в практике.

Выпрямительный диод , условное графическое обозначение которого приведено на рис. 10.4, 1, использует вентильные свойства р-n-перехода и применяется в выпрямителях переменного тока. В качестве исходного материала при изготовлении выпрямительных диодов используют германий и кремний.

Выпрямительный диод представляет собой электронный ключ, управляемый приложенным к нему напряжением. При прямом напряжении ключ замкнут, при обратном - разомкнут. Однако в обоих случаях этот ключ не является идеальным. При подаче прямого напряжения U пр ключ обладает небольшим дифференциальным сопротивлением. Поэтому за счет падения напряжения U пр на открытом диоде выпрямленное напряжение, снимаемое с нагрузочного устройства, несколько ниже входного напряжения (U пр не превышает у германневых диодов 0,5 В, а у кремниевых 1,5 В; часто за величину U пр для кремниевых диодов принимается напряжение 0,7 В).

Основными параметрами выпрямительных диодов являются:

Iпр ср max - максимальное (за период входного напряжения) значение среднего прямого тока диода;

U обр.доп - допустимое наибольшее значение постоянного обратного напряжения диода;

f max - максимально допустимая частота входного напряжения;

U пр - значение прямого падения напряжения на диоде при заданном прямом токе.

Выпрямительные диоды классифируют также по мощности и частоте.

По мощности: маломощные I пр ср max <0,3 A; средней мощности 0,3 A10 A.

По частоте: низкочастотные f max <1000 Гц; высокочастотные f max >1000 Гц.

В качестве выпрямительных применяются также диоды, выполненные на выпрямляющем переходе металл-полупроводник (диоды Шотки). Их отличает меньшее, чем у диодов с р-n-переходом, напряжение U пр и более высокие частотные характеристики.

Импульсный диод - полупроводниковый диод, имеющий малую длительность переходных процессов и использующий, так же как и выпрямительный диод, при своей работе прямую и обратную ветви ВАХ.

Длительность переходных продресов в диоде (рис. 10.4) обусловлена тем, чтo изменeние направления и значения тока через него при изменении подводимого к нему напряжения не может происходить мгновенно в связи с перезарядом емкости выпрямляющего перехода и инерционными процессами рассасывания инжектированных в базу неосновных носителей заряда. Последнее явление определяет быстродействие диодов и характеризуется специальным параметром - временем восстановления t вос его обратного сопротивления. Время восстановления равно интервалу времени между моментом переключения напряжения на диоде с прямого на обратное и моментом, когда обратный ток, который в момент переключения напряжения paвен прямому току, достигнет своего минимального значения.

Рис. 10.4. Переходные процессы в полупроводниковом диоде

Поэтому кроме параметров I пр ср max , U обр, U пр характеризующих выпрямительные свойства, для импульсных диодов вводится параметр t вос, характеризующий быстродействие.

Для повышения быстродействия (уменьшения t вос) импульсные диоды изготовляют в виде точечных структур, что обеспечивает минимальную площадь, р-n-перехода, а следовательно, и минимальное значение зарядной емкости C зар. Одновременно толщину базы делают минимально возможной для достижения минимального времени восстановления диодов.

В качестве импульсных находят применение и диоды Шотки.

Сверхвысокочастотный диод (СВЧ-диод) - полупроводниковый диод, предназначенный для преобразования и обработки высокочастотного сигнала (до десятков и сотен ГГц). Сверхвысокочастотные диоды широко применяются при генерации и усилении электромагнитных колебаний СВЧ-диапазона, умножении частоты, модуляции, регулировании и ограничении сигналов и т. д. Типичными представителями данной группы диодов являются смесительные (получение сигнала суммы или разности двух частот), детекторные (выделение постоянной составляющей СВЧ-сигнала) и переключательные (управление уровнем мощности сверхвысокочастотного сигнала) диоды. Условное графическое обозначение импульсных и СВЧ-диодов аналогично обозначению выпрямительных диодов (рис. 10.0, 1).

Стабилитрон и стабистор применяются в нелинейных цепях постоянного тока для стабилизации напряжения. Отличие стабилитрона от стабистора заключается в используемой ветви ВАХ для стабилизации напряжения. Как видно из рис. 10.3, ВАХ диода имеет участки АВ и CD, на которых значительному изменению тока соответствует незначительное изменение напряжения при сравнительно линейной их зависимости. Для стабилизации высокого напряжения (>3 В) используют обратную ветвь (участок АВ) ВАХ. Применяемые для этой цели диоды называют стабилитронами. Для стабилизации небольших значений напряжений (< 1 В -например, в интегральных схемах) используют прямую ветвь (участок CD) ВАХ, а применяемые в этом случае диоды называют стабисторами. Условное обозначение стабилитрона и стабистора показано на рис. 10.0, 2.

Стабилитроны и стабисторы изготовляют, как правило, из кремния. При использовании высоколегированного кремния (высокая концентрация примесей, а следовательно, и свободных носителей заряда) напряжение стабилизации понижается, а с уменьшением степени легирования кремния - повышается. Соответственно различают низко- и высоковольтные стабилитроны с напряжением стабилизации от 3 до 400 В.

К основным параметрам стабилитрона относятся:

U ст - напряжение стабилизации при заданном токе;

R диф - дифференциальное сопротивление при заданном токе;

I ст min - минимально допустимый ток стабилизации;

I ст max - максимально допустимый ток стабилизации;

P max - максимально допустимая рассеиваемая мощность;

где ∆U ст - отклонение напряжения U ст от номинального значения при изменении температуры в интервале ∆T.

В схемах двуполярной стабилизации напряжения применяется симметричный стабилитрон, условное графическое обозначение которого показано на рис. 10.0, 3.

Варикап - полупроводниковый диод, действие которого основано на использовании зависимости зарядной емкости C зар от значения приложенного напряжения. Это позволяет применять варикап в качестве элемента с электрически управляемой емкостью.

Основной характеристикой варикапа служит вольт-фарадная характеристика (рис. 10.5) - зависимость емкости варикапа C В, состоящей из зарядной емкости и емкости корпуса прибора, от значения приложенного обратного напряжения. В выпускаемых промышленностью варикапах значение емкости C В может изменяться от единиц до сотен пикофарад.

Рис. 10.5. Вольт-фарадная характеристика варикапа

Основными параметрами варикапа являются:

C В - емкость, измеренная между выводами варикапа при заданном обратном напряжении;

K С - коэффициент перекрытия по емкости, используемый для оценки зависимости C В =f(U обр)и равный отношению емкостей варикапа при двух заданных значениях обратного напряжения (K C =2...20).

Зависимость параметров варикапа от температуры характеризуется температурным коэффициентом емкости

где ∆C В /C В - относительное изменение емкости варикапа при изменении температуры ∆T окружающей среды.

Условное графическое обозначение варикапа приведено на 10.0, 4.

Излучающий диод - полупроводниковый диод, излучающий из области р-n-перехода кванты энергии. Излучение испускается через прозрачную стеклянную пластину, размещенную в корпусе диода.

По характеристике излучения излучающие диоды делятся на две группы: диоды с излучением в видимой области спектра, получившие название светодиоды; диоды с излучением в инфракрасной области спектра, получившие, в свою очередь, название ИК-диоды. Принцип действия обеих групп диодов одинаков и базируется на самопроизвольной рекомбинации носителей заряда при прямом токе через выпрямляющий электрический переход. Из курса физики известно, что рекомбинация носителей заряда сопровождается освобождением кванта энергии. Спектр частот последней определяется типом исходного полупроводникового материала.

Основными материалами для изготовления светодиодов служат фосфид галлия, арсенид-фосфид галлия, карбид кремния. Большую часть энергии, выделяемой в этих материалах при рекомбинации носителей заряда, составляет тепловая энергия. На долю энергии видимого излучения в лучшем случае приходится 10...20%. Поэтому кпд светодиодов невелик.

Исходными материалами для изготовления ИК-диодов являются арсенид и фосфид галлия. Полная мощность излучения этой группы диодов лежит в пределах от единиц до сотен милливатт при напряжении на диоде 1,2...3 В и прямом токе от десятков до сотен миллиампер.

Условное графическое обозначение излучающих диодов показано на рис. 10.0, 5.

Светодиоды применяют в качестве световых индикаторов, а ИК-диоды - в качестве источников излучения в оптоэлектронных устройствах.

Полупроводниковый диод – это полупроводниковый прибор с одним электрическим переходом и двумя выводами, в котором используется то или иное свойство электрического перехода. В качестве электрического перехода может использоваться электронно-дырочный переход, контакт металл-полупроводник или гетеропереход.

Область полупроводникового кристалла диода, имеющая более высокую концентрацию примесей (следовательно, и основных носителей заряда), называется эмиттером, а другая, с меньшей концентрацией, – базой. Сторону диода, к которой при прямом включении подключается отрицательный полюс источника питания, часто называют катодом, а другую – анодом.

По назначению диоды делятся на:

1. выпрямительные (силовые), предназначенные для преобразования переменного напряжения источников питания промышленной частоты в постоянное;

2. стабилитроны (опорные диоды), предназначенные для стабилизации напряжений, имеющие на обратной ветви ВАХ участок со слабой зависимостью напряжения от протекающего тока:

3. варикапы, предназначенные для использования в качестве емкости, управляемой электрическим напряжением;

4. импульсные, предназначенные для работы в быстродействующих импульсных схемах;

5. туннельные и обращенные, предназначенные для усиления, генерирования и переключения высокочастотных колебаний;

6. сверхвысокочастотные, предназначенные для преобразования, переключения, генерирования сверхвысокочастотных колебаний;

7. светодиоды, предназначенные для преобразования электрического сигнала в световую энергию;

8. фотодиоды, предназначенные для преобразования световой энергии в электрический сигнал.

Система и перечень параметров, включаемые в технические описания и характеризующие свойства полупроводниковых диодов, выбираются с учетом их физико-технологических особенностей и области применения. В большинстве случаев важны сведения об их статических, динамических и предельных параметрах.

Статические параметры характеризуют поведение приборов при постоянном токе, динамические – их частотно-временные свойства, предельные параметры определяют область устойчивой и надежной работы.

1.5. Вольтамперная характеристика диода

Вольтамперная характеристика (ВАХ) диода аналогична вольтамперной характеристике p-n -перехода и имеет две ветви – прямую и обратную.

ВАХ диода представлена на рисунке 5.

Если диод включен в прямом направлении ("+" – к области р , а "-" – к областиn ), то при достижении порогового напряженияU пор диод открывается и через него протекает прямой ток. При обратном включении ("-" к областир , а "+" – к областиn ) через диод протекает незначительный обратный ток, то есть фактически диод закрыт. Следовательно, можно считать, что диод пропускает ток только в одном направлении, что позволяет использовать его в качестве выпрямительного элемента.

Значения прямого и обратного токов отличаются на несколько порядков, а прямое падение напряжения не превышает единиц вольт по сравнению с обратным напряжением, которое может составлять сотни и более вольт. Выпрямительные свойства диодов тем лучше, чем меньше обратный ток при заданном обратном напряжении и чем меньше падение напряжения при заданном прямом токе.

Параметрами ВАХ являются: динамическое (дифференциальное) сопротивление диода переменному току и статическое сопротивление постоянному току.

Статическое сопротивление диода постоянному току в прямом и обратном направлении выражается соотношением:

, (2)

где U иI задают конкретные точки на ВАХ диода, в которых производится вычисление сопротивления.

Динамическое сопротивление переменному току определяет изменение тока через диод с изменением напряжения вблизи выбранной рабочей точки на характеристике диода:

. (3)

Поскольку типичная ВАХ диода имеет участки с повышенной линейностью (один на прямой ветви, один – на обратной), r д вычисляется как отношение малого приращения напряжения на диоде к малому приращению тока через него при заданном режиме:

. (4)

Чтобы вывести выражение для r д, удобнее принять в качестве аргумента токI , а напряжение считать его функцией и, логарифмируя уравнение (1), привести его к виду:

. (5)

. (6)

Отсюда следует, что с ростом прямого тока r д быстро уменьшается, так как при прямом включении диодаI >>I S .

На линейном участке ВАХ при прямом включении диода статическое сопротивление всегда больше динамического сопротивления: R ст >r д. При обратном включении диодаR ст < r д.

Таким образом, электрическое сопротивление диода в прямом направлении намного меньше, чем в обратном. Следовательно, диод обладает односторонней проводимостью и используется для выпрямления переменного тока.

Полупроводниковый диод это полупроводниковый прибор с одним p-n переходом и с двумя электродами. Принцип действия полупроводникового диода основан на явлении p-n перехода, поэтому для дальнейшего изучения любых полупроводниковых приборов нужно знать как работает .

Выпрямительный диод (также называют вентилем) — это разновидность полупроводникового диода который служит для преобразования переменного тока в постоянный.

У диода есть два вывода (электрода) анод и катод. Анод присоединён к p слою, катод к n слою. Когда на анод подаётся плюс, а на анод минус (прямое включение диода) диод пропускает ток. Если на анод подать минус, а на катод плюс (обратное включение диода) тока через диода не будет это видно из вольт амперной характеристики диода. Поэтому когда на вход выпрямительного диода поступает переменное напряжение через него проходит только одна полуволна.

Вольт-амперная характеристика (ВАХ) диода.

Вольт-амперная характеристика диода показана на рис. I. 2. В первом квадранте показана прямая ветвь характеристики, описывающая состояние высокой проводимости диода при приложенном к нему прямом напряжении, которая линеаризуется кусочно-линей­ной функцией

u = U 0 +R Д i

где: u — напряжение на вентиле при прохождении тока i; U 0 — пороговое напряжение; R д — динамическое сопротивление.

В третьем квадранте находится обратная ветвь вольт-амперной характеристики, описывающая состояние низкой проводимости при проложенном к диоду обратном напряжении. В состоянии низкой проводимости ток через полупроводниковую структуру практически не протекает. Однако это справедливо только до определённого значения обратного напряжения. При обратном напряжении, когда напряженность электрического поля в p-n переходе достигает порядка 10 s В/см, это поле может сообщить подвижным носителям заряда - электронам и дыркам, постоянно возникающим во всем объеме полупроводниковой структуры в результате термической генерации,- кинетическую энергию, достаточную для ионизации нейтральных атомов кремния. Образовавшиеся дырки и электроны проводимости, в свою очередь, ускоряются электрическим полем p-n перехода и также ионизируют нейтральные атомы кремния. При этом происходит лавинообразное нарастание обратного тока, .т. е. лавинный пробои.

Напряжение, при котором происходит резкое повышение обратного тока, называется напряжением пробоя U 3 .