Определение и рисунок выпрямительного диода. Полупроводниковые диоды

Введение

Полупроводниковый диод полупроводниковый прибор с одним электрическим переходом и двумя выводами (электродами). В отличие от других типов диодов, принцип действия полупроводникового диода основывается на явлении p-n-перехода.

Плоскостные p-n-переходы для полупроводниковых диодов получают методом сплавления, диффузии и эпитаксии.

Условное графическое обозначение (рис. 1) зависит от конструкции диода.

а б в г д е

а – диод; б – стабилитрон; в – симметричный стабилитрон;

г – туннельный диод; д – варикап; е – обращённый диод

Рисунок 1 – Обозначение диодов на принципиальных схемах

Основные характеристики и параметры диодов:

Вольт-амперная характеристика;

Постоянный обратный ток диода;

Постоянное обратное напряжение диода;

Постоянный прямой ток диода;

Диапазон частот диода;

Дифференциальное сопротивление;

- ёмкость;

Пробивное напряжение;

Максимально допустимая мощность;

Максимально допустимый постоянный прямой ток диода.

Типы диодов по назначению

Выпрямительные диоды предназначены для преобразования переменного тока в постоянный.

Импульсные диоды имеют малую длительность переходных процессов, предназначены для применения в импульсных режимах работы.

Детекторные диоды предназначены для детектирования сигнала

Смесительные диоды предназначены для преобразования высокочастотных сигналов в сигнал промежуточной частоты.

Переключательные диоды предназначены для применения в устройствах управления уровнем сверхвысокочастотной мощности.

Параметрические

Ограничительные диоды (диаки, супрессоры) предназначены для защиты радио и бытовой аппаратуры от повышения сетевого напряжения.

Умножительные

Настроечные

Генераторные

Типы диодов по частотному диапазону

Низкочастотные

Высокочастотные

Типы диодов по размеру перехода

Плоскостные

Точечные

Типы диодов по конструкции

Диоды Шоттки

СВЧ-диоды

Стабилитроны

Стабисторы

Варикапы

Светодиоды

Фотодиоды

Лавинный диод

Лавинно-пролётный диод

Диод Ганна

Туннельные диоды

Обращённые диоды

Вольт-амперная характеристика диода

Технические параметры диода в основном определяются его вольтамперной характеристикой (ВАХ), типовой вид которой представлен на рис. 1. Обозначения и определения основных параметров диодов и тиристоров регламентируются стандартами: «Термины, определения и буквенные обозначения» ГОСТ 20332-84. На характеристике можно выделить две типичные ветви: прямую и обратную. Прямая ветвь соответствует проводящему состоянию диода при полярности прямого напряжения. Обратная ветвь показывает закрытое состояние диода при соответствующей полярности обратного напряжения. Прямая ветвь характеризуется малыми значениями прямого напряжения на диоде, а обратная – малыми значениями тока, называемого обратным.

Рисунок 2 – ВАХ диода

При подключении постоянного источника питания «плюсом» к аноду диода (области р – типа), а «минусом» к катоду (области n – типа) диод оказывается в открытом состоянии и в цепи потечёт ток, величина которого зависит от свойств прибора и величины приложенного напряжения. Прямая полярность подключения определяет движение электронов из области n – типа в сторону области р – типа, а «дырки» из области р – типа движутся навстречу электронам. Встречаясь в области р – n перехода носители рекомбинируют и прекращают своё существование. Отрицательный заряд батареи поставляет неограниченное число электронов в n область, а положительный сгенерирует неограниченное число «дырок» в р области. В таком случае сопротивление р – n перехода мало, что способствует протеканию прямого тока.

При обратном подключении источника питания к прибору, электрические заряды на диоде поведут себя по другому: электроны в области n проводимости будут стремиться к положительному заряду, удаляясь от р – n перехода. В свою очередь, дырки в области р проводимости станут перемещаться к отрицательному электроду так же удаляясь от р – n перехода. В итоге граница областей с различной проводимостью расширится и образует зону, обеднённую любыми носителями. Такая зона оказывает току большое сопротивление, однако небольшой обмен носителями здесь всё же происходит, а значит, есть и ток, но его величина во много раз меньше прямого. Этот ток принято называть обратным током диода.

Порядок выполнения работы:

1) запустить программу «Multisim»;

2) используя встроенную библиотеку компонентов и приборов составить схему из приложения А;

3) установить на генераторе синусоидальное напряжение 3В частотой 5 Гц;

4) запустить симуляцию, настроить осциллограф в режиме развёртки В-А так, чтобы было хорошо видно прямую ветвь (рис. 2) ВАХ диода;

5) остановить симуляцию, зарисовать ВАХ диода;

6) установить на генераторе синусоидальное напряжение 150 В частотой 5 Гц;

7) запустить симуляцию, настроить осциллограф в режиме развёртки В-А так, чтобы было хорошо видно обратную ветвь (рис. 2) ВАХ диода;

8) остановить симуляцию, зарисовать ВАХ диода;

10) аналогичным способом измерить ВАХ полупроводникового стабилитрона (приложение Б, настройки генератора – 4 В, 5 Гц);

11) составить схему для диака из приложения В;

12) мультиметр настроить на режим измерения тока, осциллограф на режим обычной временной развёртки;

13) повысив напряжение при помощи переключения обмоток трансформатора, убедиться в перегорании предохранителя;

14) остановить симуляцию, сделать выводы, объяснить что происходит;

15) составить схему выпрямительного моста (приложение Г);

16) установить на генераторе синусоидальное напряжение 9 В частотой 50 Гц;

17) запустить симуляцию, настроить осциллограф;

18) исследовать схему, меняя напряжение и переключая нагрузку, добиться перегорания лампы и предохранителей;

19) остановить симуляцию, сделать выводы, зарисовать осциллограммы;

20) составить схему исследования диода (приложение Д);

21) запустить симуляцию, переключиться на генератор синусоидальных колебаний, настроить осциллографы;

22) сравнить осциллограммы параллельных приборов;

23) переключиться на батарею постоянного тока, изменяя движок переменного резистора R1 построить зависимость напряжения U2 (XMM2) от напряжения U1 (XMM1);

25) закрыть программу;

26) ответить на контрольные вопросы.

Полупроводниковый диод – это полупроводниковый прибор с одним электрическим переходом и двумя выводами, в котором используется то или иное свойство электрического перехода. В качестве электрического перехода может использоваться электронно-дырочный переход, контакт металл-полупроводник или гетеропереход.

Область полупроводникового кристалла диода, имеющая более высокую концентрацию примесей (следовательно, и основных носителей заряда), называется эмиттером, а другая, с меньшей концентрацией, – базой. Сторону диода, к которой при прямом включении подключается отрицательный полюс источника питания, часто называют катодом, а другую – анодом.

По назначению диоды делятся на:

1. выпрямительные (силовые), предназначенные для преобразования переменного напряжения источников питания промышленной частоты в постоянное;

2. стабилитроны (опорные диоды), предназначенные для стабилизации напряжений, имеющие на обратной ветви ВАХ участок со слабой зависимостью напряжения от протекающего тока:

3. варикапы, предназначенные для использования в качестве емкости, управляемой электрическим напряжением;

4. импульсные, предназначенные для работы в быстродействующих импульсных схемах;

5. туннельные и обращенные, предназначенные для усиления, генерирования и переключения высокочастотных колебаний;

6. сверхвысокочастотные, предназначенные для преобразования, переключения, генерирования сверхвысокочастотных колебаний;

7. светодиоды, предназначенные для преобразования электрического сигнала в световую энергию;

8. фотодиоды, предназначенные для преобразования световой энергии в электрический сигнал.

Система и перечень параметров, включаемые в технические описания и характеризующие свойства полупроводниковых диодов, выбираются с учетом их физико-технологических особенностей и области применения. В большинстве случаев важны сведения об их статических, динамических и предельных параметрах.

Статические параметры характеризуют поведение приборов при постоянном токе, динамические – их частотно-временные свойства, предельные параметры определяют область устойчивой и надежной работы.

1.5. Вольтамперная характеристика диода

Вольтамперная характеристика (ВАХ) диода аналогична вольтамперной характеристике p-n -перехода и имеет две ветви – прямую и обратную.

ВАХ диода представлена на рисунке 5.

Если диод включен в прямом направлении ("+" – к области р , а "-" – к областиn ), то при достижении порогового напряженияU пор диод открывается и через него протекает прямой ток. При обратном включении ("-" к областир , а "+" – к областиn ) через диод протекает незначительный обратный ток, то есть фактически диод закрыт. Следовательно, можно считать, что диод пропускает ток только в одном направлении, что позволяет использовать его в качестве выпрямительного элемента.

Значения прямого и обратного токов отличаются на несколько порядков, а прямое падение напряжения не превышает единиц вольт по сравнению с обратным напряжением, которое может составлять сотни и более вольт. Выпрямительные свойства диодов тем лучше, чем меньше обратный ток при заданном обратном напряжении и чем меньше падение напряжения при заданном прямом токе.

Параметрами ВАХ являются: динамическое (дифференциальное) сопротивление диода переменному току и статическое сопротивление постоянному току.

Статическое сопротивление диода постоянному току в прямом и обратном направлении выражается соотношением:

, (2)

где U иI задают конкретные точки на ВАХ диода, в которых производится вычисление сопротивления.

Динамическое сопротивление переменному току определяет изменение тока через диод с изменением напряжения вблизи выбранной рабочей точки на характеристике диода:

. (3)

Поскольку типичная ВАХ диода имеет участки с повышенной линейностью (один на прямой ветви, один – на обратной), r д вычисляется как отношение малого приращения напряжения на диоде к малому приращению тока через него при заданном режиме:

. (4)

Чтобы вывести выражение для r д, удобнее принять в качестве аргумента токI , а напряжение считать его функцией и, логарифмируя уравнение (1), привести его к виду:

. (5)

. (6)

Отсюда следует, что с ростом прямого тока r д быстро уменьшается, так как при прямом включении диодаI >>I S .

На линейном участке ВАХ при прямом включении диода статическое сопротивление всегда больше динамического сопротивления: R ст >r д. При обратном включении диодаR ст < r д.

Таким образом, электрическое сопротивление диода в прямом направлении намного меньше, чем в обратном. Следовательно, диод обладает односторонней проводимостью и используется для выпрямления переменного тока.

Полупроводниковые приборы

Диоды.

Полупроводниковым диодом называется устройство, пред­ставляющее собой два соединенных полупроводника различ­ной проводимости.

Обозначение на схемах:

V или VD - обозначение диода

VS – обозначение диодной сборки

V7 Анод Цифра после V, показывает номер диода в схеме

Анод – это полупроводник P-типа Катод – это полупроводник N-типа

При приложении внешнего напряжения к диоду в прямом направлении («+» на анод, а « - » на катод) уменьшается потенциальный барьер, увеличивается диффузия – диод открыт (закоротка).

При приложении напряжения в обратном направлении увеличивается потенциальный барьер, прекращается диффузия – диод закрыт (разрыв).

Вольтамперная характеристика (ВАХ) полупроводникового диода.

U эл.проб. = 10 ÷1000 В – напряжение электрического пробоя.

U нас. = 0,3 ÷ 1 В – напряжение насыщения.

I a и U a – анодный ток и напряжение.

Участок I: – рабочий участок (прямая ветвь ВАХ)

Участки II, III, IV, - обратная ветвь ВАХ (не рабочий участок)

Участок II: Если приложить к диоду обратное напряжение – диод закрыт, но все равно через него будет протекать малый обратный ток (ток дрейфа, тепловой ток), обусловленный движением не основных носителей.

Участок III: Участок электрического пробоя. Если приложить достаточно большое напряжение, неосновные носители будут разгоняться и при соударении с узлами кристаллической решетки происходит ударная ионизация, которая в свою очередь приводит к лавинному пробою (вследствие чего резко возрастает ток)

Электрический пробой является обратимым, после снятия напряжения P-N-переход восстанавливается.

Участок IV: Участок теплового пробоя. Возрастает ток, следовательно, увеличивается мощность, что приводит к нагреву диода и он сгорает.

Вслед за электрическим пробоем, очень быстро следует тепловой, поэтому диоды при электрическом пробое не работают. Тепловой пробой - необратим.

Вольтамперная характеристика идеального диода (вентиля)

Основные параметры полупроводниковых приборов:

1. Максимально допустимый средний за период прямой ток (I ПР. СР.)

Это такой ток, который диод способен пропустить в прямом направлении.

Величина допустимого среднего за период прямого тока равна 70% от тока теплового пробоя.

По прямому току диоды делятся на три группы:

1) Диоды малой мощности (I ПР.СР < 0,3 А)

2) Диоды средней мощности (0,3

3) Диоды большой мощности (I ПР.СР > 10 А)

Диоды малой мощности не требуют дополнительного теплоотвода (тепло отводится с помощью корпуса диода)

Для диодов средней и большой мощности, которые не эффективно отводят тепло своими корпусами, требуется дополнительны теплоотвод (радиатор – кубик металла, в котором с помощью литья или фрезерования делают шипы, в результате чего возрастает поверхность теплоотвода. Материал - медь, бронза, алюминий, силумин)

2. Постоянное прямое напряжение (U пр.)

Постоянное прямое напряжение – это падение напряжения между анодом и катодом при протекании максимально допустимого прямого постоянного тока. Проявляется особенно при малом напряжении питания.

Постоянное прямое напряжение зависит от материала диодов (германий - Ge, кремний - Si)

U пр. Ge ≈ 0.3÷0.5 В (Германиевые) U пр. Si ≈ 0.5÷1 В (Кремниевые)

Германиевые диоды обозначают – ГД (1Д)

Кремниевые диоды обозначают – КД (2Д)

3. Повторяющееся импульсное обратное максимальное напряжение (U обр. max)

Электрический пробой идет по амплитудному значению (импульсу) U обр. max ≈ 0.7U Эл. пробоя (10÷100 В)

Для мощных диодов U обр. max = 1200 В.

Этот параметр иногда называют классом диода (12 класс -U обр. max = 1200 В)

4. Максимальный обратный ток диода (I max ..обр.)

Соответствует максимальному обратному напряжению (составляет единицы mA).

Для кремниевых диодов максимальный обратный ток в два раза меньше, чем для германиевых.

5. Дифференциальное (динамическое) сопротивление.

Выпрямительные диоды применяются в цепях управления, коммутации, в ограничительных и развязывающих цепях, в источниках питания для преобразования (выпрямления) переменного напряжения в постоянное, в схемах умножения напряжения и преобразователях постоянного напряжения, где не предъявляются высокие требования к частотным и временным параметрам сигналов. В зависимости от значения максимального выпрямляемого тока различают выпрямительные диоды малой мощности (\(I_{пр max} \le {0,3 А}\)), средней мощности (\({0,3 А} < I_{пр max} \le {10 А}\)) и большой мощности (\(I_{пр max} > {10 А}\)). Диоды малой мощности могут рассеивать выделяемую на них теплоту своим корпусом, диоды средней и большой мощности должны располагаться на специальных теплоотводящих радиаторах, что предусматривается в т.ч. и соответствующей конструкцией их корпусов.

Обычно, допустимая плотность тока, проходящего через \(p\)-\(n\)-переход, не превышает 2 А/мм2, поэтому для получения указанных выше значений среднего выпрямленного тока в выпрямительных диодах используют плоскостные \(p\)-\(n\)-переходы. Такие переходы имеют существенную емкость, что ограничивает максимальную допустимую рабочую частоту (\(f_р\)) выпрямительных диодов.

Выпрямительные свойства диодов тем лучше, чем меньше обратный ток при заданном обратном напряжении и чем меньше падение напряжения при заданном прямом токе. Значения прямого и обратного токов отличаются на несколько порядков, а прямое падение напряжения не превышает единиц вольт по сравнению с обратным напряжением, которое может составлять сотни и более вольт. Поэтому диоды обладают односторонней проводимостью, что позволяет использовать их в качестве выпрямительных элементов. Вольт-амперные характеристики (ВАХ) германиевых и кремниевых диодов различаются. На рис. 2.3‑1 для сравнения показаны типичные ВАХ для германиевых и кремниевых выпрямительных диодов при различных температурах окружающей среды.

Рис. 2.3-1. Вольт-амперные характеристики выпрямительных диодов при различных температурах окружающей среды

По приведенным ВАХ видно, что обратный ток кремниевых диодов значительно меньше обратного тока германиевых диодов. Кроме того, обратная ветвь вольт-амперной характеристики кремниевых диодов не имеет явно выраженного участка насыщения, что обусловлено генерацией носителей зарядов в \(p\)-\(n\)-переходе и токами утечки по поверхности кристалла. При подаче обратного напряжения превышающего некий пороговый уровень происходит резкое увеличение обратного тока, что может привести к пробою \(p\)-\(n\)-перехода. У германиевых диодов, вследствие большой величины обратного тока, пробой имеет тепловой характер. У кремниевых диодов вероятность теплового пробоя мала, у них преобладает электрический пробой. Пробой кремниевых диодов имеет лавинный характер, поэтому у них, в отличие от германиевых диодов, пробивное напряжение повышается с увеличением температуры. Допустимое обратное напряжение кремниевых диодов (до 1600 В) значительно превосходит аналогичный параметр германиевых диодов.

Обратные токи в значительной степени зависят от температуры перехода. Из рисунка видно, что с ростом температуры обратный ток возрастает. Для приближенной оценки можно считать, что с увеличением температуры на 10 °С обратный ток германиевых диодов возрастает в 2, а кремниевых - в 2,5 раза. Верхний предел диапазона рабочих температур германиевых диодов составляет 75...80 °С, а кремниевых - 125 °С. Существенным недостатком германиевых диодов является их высокая чувствительность к кратковременным импульсным перегрузкам.

Вследствие меньшего обратного тока кремниевого диода его прямой ток, равный току германиевого диода, достигается при большем значении прямого напряжения. Поэтому мощность, рассеиваемая при одинаковых токах, в германиевых диодах меньше, чем в кремниевых. Прямое напряжение при малых прямых токах, когда преобладает падение напряжения на переходе, с ростом температуры уменьшается. При больших токах, когда преобладает падение напряжения на сопротивлении нейтральных областей полупроводника, зависимость прямого напряжения от температуры становится положительной. Точка, в которой отсутствует зависимость прямого напряжения от температуры (т.е. эта зависимость меняет знак), называется точкой инверсии . У большинства диодов малой и средней мощности допустимый прямой ток, как правило, не превышает точки инверсии, а у мощных диодов допустимый ток может быть выше этой точки.

Одним из электронных устройств, широко использующихся в различных схемах, является выпрямительный диод, с помощью которого переменный ток преобразуется в постоянный. Его конструкция создана в виде двухэлектродного прибора с односторонней электрической проводимостью. Выпрямление переменного тока происходит на переходах металл-полупроводник и полупроводник-металл. Точно такой же эффект достигается в электронно-дырочных переходах некоторых кристаллов - германия, кремния, селена. Эти кристаллы во многих случаях используются в качестве основных элементов приборов.

Выпрямительные диоды применение нашли в различных электронных, радиотехнических и электрических устройствах. С их помощью осуществляется замыкание и размыкание цепей, детектирование и коммутация импульсов и электрических сигналов, а также другие аналогичные преобразования.

Принцип работы выпрямительного диода

Каждый диод оборудуется двумя выводами, то есть электродами - анодом и катодом. Анод соединяется с р-слоем, а катод - с n-слоем. В случае прямого включения диода на анод поступает плюс, а на катод - минус. В результате, через диод начинает проходить электрический ток.

Если же подачу тока выполнить наоборот - к аноду подать минус, а к катоду - плюс получится так называемое обратное включение диода. В этом случае течения тока уже не будет, на что указывает вольтамперная характеристика выпрямительного диода. Поэтому при поступлении на вход , через диод будет проходить только одна полуволна.

Представленный рисунок наглядно отражает вольтамперную характеристику диода. Ее прямая ветвь расположена в первом квадранте графика. Она описывает диод в состоянии высокой проводимости, когда к нему приложено прямое напряжение. Данная ветвь выражается в виде кусочно-линейной функции u = U 0 + R Д x i, в которой u представляет собой напряжением на вентиле во время прохождения тока i. Соответственно, U 0 и R Д являются пороговым напряжением и динамическим сопротивлением.

Третий квадрант содержит обратную ветвь вольтамперной характеристики, указывающей на низкую проводимость при обратном напряжении, приложенном к диоду. В этом состоянии течение тока через полупроводниковую структуру практически отсутствует.

Данное положение будет правильным лишь до определенного значения обратного напряжения. В этом случае напряженность электрического поля в области p-n-перехода может достичь уровня 105 В/см. Такое поле сообщает электронам и дыркам - подвижным носителям заряда, кинетическую энергию, способную вызвать ионизацию нейтральных атомов кремния.

Стандартная структура выпрямительного диода предполагает наличие дырок и электронов проводимости, постоянно возникающих под действием термической генерации по всему объему структуры проводника. В дальнейшем происходит их ускорение под действием электрического поля p-n-перехода. То есть электроны и дырки также участвуют в ионизации нейтральных атомов кремния. В этом случае обратный ток нарастает лавинообразно, возникают так называемые лавинные пробои. Напряжение, при котором резко повышается обратный ток, обозначается на рисунке в виде напряжения пробоя U3.

Основные параметры выпрямительных диодов

Определяя параметры выпрямительных элементов, следует учитывать следующие факторы:

  • , максимально допустимая при выпрямлении тока, когда устройство еще не может выйти из строя.
  • Максимальное значение среднего выпрямленного тока.
  • Максимальный показатель обратного напряжения.

Выпрямительные устройства выпускаются различной формы и могут монтироваться разными способами.

В соответствии с физическими характеристиками, они разделяются на следующие группы:

  • Выпрямительные диоды большой мощности, пропускная способность которых составляет до 400 А. Они относятся к категории высоковольтных и выпускаются в двух видах корпусов. Штыревой корпус изготавливается из стекла, а таблеточный - из керамики.
  • Выпрямительные диоды средней мощности с пропускной способностью от 300 мА до 10 А.
  • Маломощные выпрямительные диоды с максимально допустимым значением тока до 300 мА.

Выбирая то или иное устройство, необходимо учитывать вольтамперные характеристики обратного и пикового максимальных токов, максимально допустимое прямое и обратное напряжение, среднюю силу выпрямленного тока, а также материал изделия и тип его монтажа. Все основные свойства выпрямительного диода и его параметры наносятся на корпус в виде условных обозначений. Маркировка элементов указывается в специальных справочниках и каталогах, ускоряя и облегчая их выбор.

Схемы с использованием выпрямительных диодов отличаются количеством фаз:

В зависимости от используемого материала, выпрямительные диоды и схемы с диодами могут быть германиевыми или кремниевыми. Чаще всего применяется последний вариант, благодаря физическим свойствам кремния. Данные диоды обладают значительно меньшей величиной обратных токов при одном и том же напряжении, поэтому допустимое обратное напряжение имеет очень высокую величину, в пределах 1000-1500 вольт.

Для сравнения, у германиевых диодов эта величина составляет 100-400 В. Кремниевые диоды сохраняют работоспособность в температурном диапазоне от - 60 до + 150 градусов, а германиевые - только в пределах от - 60 до + 850С. Электронно-дырочные пары при температуре, превышающей это значение, образуются с большой скоростью, что приводит к резкому увеличению обратного тока и снижению эффективности работы выпрямителя.

Схема включения выпрямительного диода

Простейший выпрямитель работает по следующей схеме. На вход подается переменное напряжение сети с положительными и отрицательными полупериодами, окрашенными соответственно в красный и синий цвета. На выходе подключается обычная нагрузка RH, а выпрямляющим элементом будет диод VD.

Когда на анод поступают положительные полупериоды напряжения, происходит открытие диода. В этот период через диод и нагрузку, запитанную от выпрямителя, будет протекать прямой ток диода Iпр. На графике, расположенном справа, эта волна обозначена красным цветом.

При поступлении на анод отрицательных полупериодов напряжения, наступает закрытие диода, и во всей цепи начинается течение незначительного обратного тока. В данном случае отрицательная полуволна переменного тока отсекается диодом. Эту отсеченную полуволну обозначает синяя прерывистая линия. На схеме условное обозначение выпрямительного диода такое же, как обычно, только поверх значка проставляются символы VD.

В результате, через нагрузку, подключенную через диод к сети, будет протекать уже не переменный, а пульсирующий ток одного направления. Фактически, это и есть выпрямленный переменный ток. Однако такое напряжение подходит лишь для нагрузок малой мощности, запитанных от сети переменного тока. Это могут быть лампы накаливания, которым не требуются особые условия питания. В этом случае напряжение будет проходить через лампу лишь во время импульсов - положительных волн. Наблюдается слабое мерцание лампы с частотой 50 Гц.

При подключении питания с таким же напряжением к приемнику или усилителю мощности, в громкоговорителе или колонках, будет слышен гул с низкой тональностью, частотой 50 Гц, известный как фон переменного тока. В этих случаях аппаратура начинает «фонить». Причиной такого состояния считается пульсирующий ток, проходящий через нагрузку и создающий в ней пульсирующее напряжение. Именно оно и создает фон.

Данный недостаток частично устраняется путем параллельного подключения к нагрузке фильтрующего электролитического конденсатора Сф с большой емкостью. В течение положительных полупериодов он заряжается токами, а во время отрицательных - разряжается с помощью нагрузки RH. Большая емкость конденсатора позволяет поддерживать на нагрузке непрерывный ток в течение всех полупериодов - положительных и отрицательных. На графике такой ток представляет собой сплошную волнистую линию красного цвета.

Тем не менее, данный сглаженный ток все равно не обеспечивает нормальную работу, поскольку половина входного напряжения теряется при выпрямлении, когда задействуется только один полупериод. Этот недостаток компенсируют мощные выпрямительные диоды, собранные вместе в так называемый диодный мост. Данная схема состоит из четырех элементов, что позволяет пропускать ток в течение всех полупериодов. За счет этого преобразование переменного тока в постоянный происходит значительно эффективнее.