Сборка фланцевых соединений. Инструкция по то и ремонту технологической части системы газового пожаротушения - требования к фланцевым соединениям и крепежным деталям Момент затяжки фланцевых соединений трубопроводов таблица

Методика расчета усилий затяжки болтовых соединений фланцев часть II

Мерой нагрузки, требуемой для растягивания болта, является предел текучести. Действуя в его рамках, мы позволяем болту возвращаться к своей первоначальной длине. Перегрузка болта может привести к выходу за рамки предела текучести и фактически снизить нагрузки, действующие на прокладку, вследствие дополнительных напряжений возникших внутри фланцевого соединения. В этом случае продолжение затяжки болтов не обязательно увеличивает нагрузку на прокладку. Скорее всего, вместо предотвращения утечки может произойти разрушение болта.

Болт может потерять свою сжимающую функцию, если он не растянут достаточно и система ослабляется, следуя за его затяжкой. Рекомендуется нагружать болт на 50-60% от предела текучести, для того, чтобы он достаточно растянулся. В ряде случаев, однако, данная величина может быть уменьшена, в частности, если нагрузка может повредить прокладку или согнуть .

Болты производятся из различных материалов, каждый из которых характеризуется индивидуальным пределом текучести. Правильный выбор болта имеет решающее значение для эффективности собранного фланцевого соединения.

Итак, у нас есть динамометрический ключ, для измерения крутящего момента и формула, позволяющая вычислить этот момент исходя из требуемого усилия сжатия прокладки. Вопрос в том, как сильно надо сжать прокладку, чтобы обеспечить герметичность?

Сила, оказывающая давление на прокладку состоит из нескольких составляющих:

Первая составляющая должна сжимать и удерживать прокладку на месте. Нагрузка, создаваемая болтом, сжимает прокладку, и она принимает форму поверхности фланца. Гидростатическое давление, возникающее внутри сосуда или трубопровода, наоборот стремится выдавить прокладку из соединения фланцев приварных . Сжатие прокладки должно быть достаточным, чтобы удерживать ее на месте, компенсируя внутреннее давление. Также требуется некоторая остаточная нагрузка, которая удерживает прокладку, после того как давление спадет.

Усилие, необходимое для создания герметичного соединения, зависит от типа или формы прокладки, жидкости в системе, а также температуры и давления. В стандартах ASME указаны основные факторы, влияющие на прокладку, но всегда лучше получить рекомендации от производителя прокладок.

Уравнение для определения минимального усилия на прокладке выглядит следующим образом:

Wm2 = (π b G) у

Первая комбинация параметров – это эффективная площадь прокладки на основе ее ширины b и нагрузочного диаметра G, который отражает противодействие прокладки. Вывод численных значений для всех типов прокладок и конфигураций сжатия выходит за рамки данной статьи. Тем не менее, эти данные можно найти в документации на котлы или сосуды под давлением.

Следует отметить, что некоторые производители используют более консервативный подход, в частности предлагают максимально приравнять площадь прокладки к уплотнительной поверхности . Тем не менее, вышеуказанная формула позволяет рассчитать минимальные нагрузки.

Для того чтобы получить конечную величину сжатия Wm2 , необходимо умножить все это на коэффициент прокладки y . Чем больше величина коэффициента y , тем большие усилия требуются для того чтобы «осадить» прокладку.

мента, указанного в таблице ниже.
a Приводимая ниже таблица применима к болтам, показанным на рис. А.

2. Таблица моментов затяжки болтов фланцевых соединений
a Если нет особых указаний, при затяжке болтов фланцевых соединений пользуйтесь нор"
мативами, приведенными ниже.

3. Таблица моментов затяжки втулок трубных соединений с уплотнительным кольцом
a Если нет особых указаний, при затяжке втулок разъемов трубопроводов с уплотнительным
кольцом пользуйтесь нормативами, приведенными ниже.

4. Таблица моментов затяжки заглушек с уплотнительным кольцом
a Если нет особых указаний, при затяжке заглушек с уплотнительным кольцом пользуйтесь
нормативами, приведенными ниже.

5. Таблица моментов затяжки для шлангов (с коническим и торцевым уплотнениями)
a Если нет особых указаний, при затяжке шлангов (с коническим и торцевым уплотнениями)
пользуйтесь нормативами, приведенными ниже
a Приведенные ниже моменты применяются при нанесении на резьбу моторного масла.

6. Таблица моментов затяжки для соединений с торцевым уплотнением
a Затягивайте соединения с торцевым уплотнением (накидные гайки) на трубах низкого
давления из плакированной стали, используемые на двигателях, до моментов, представ"
ленных в следующей таблице.
a Прикладывайте следующие моменты затяжки к соединениям с торцевым уплотнением,
предварительно нанеся на их резьбовые участки слой моторного масла.

Для справки: В зависимости от конкретных технических характеристик используются соединения с
торцевым уплотнением, размеры которых указаны в скобках ().

7. Таблица моментов затяжки для двигателей серии 102, 107 и 114 (болты и гайки)
a Если нет особых указаний, при затяжке болтов и гаек с метрической резьбой на

8. Таблица моментов затяжки для двигателей серии 102, 107 и 114 (шарнирные соединения)
a Если нет особых указаний, при затяжке шарнирных соединений с метрической резьбой на
двигателях серии 102, 107 и 114 пользуйтесь нормативами, приведенными ниже.

9. Таблица моментов затяжки для двигателей серии 102, 107 и 114 (Винты с конической
резьбой)
a Если нет особых указаний, при затяжке винтов с конической резьбой (ед. изм: дюйм) на
двигателях серии 102, 107 и 114 пользуйтесь нормативами, приведенными ниже.

Фланец - это способ соединения труб, задвижек, насосов и другого оборудования, для формирования системы трубопроводов. Такой способ соединения обеспечивает простой доступ для очистки, осмотра или модификации. Фланцы обычно имеют резьбовое или сварное соединение. Фланцевое соединение состоит из закрепленных с помощью болтов двух фланцев и прокладки между ними, для обеспечения герметичности.

Фланцы труб изготавливаются из различных материалов. Фланцы имеют обработанные поверхности, изготавливаются из литого чугуна и чугуна с шаровидным графитом, но наиболее используемый материал, это кованная углеродистая сталь.

Наиболее используемые фланцы в нефтяной и химической промышленности:

  • с шейкой для приварки
  • сквозной фланец
  • приварной с впадиной под сварку
  • приварной внахлест (свободновращающийся)
  • резьбовой фланец
  • фланцевая заглушка


Все типы фланцев, кроме свободного, имеют усиленную поверхность.

Специальные фланцы
За исключением фланцев, о которых было сказано выше, есть еще ряд специальных фланцев, таких как:

  • фланец диафрагмы
  • длинные приварные фланцы с буртиком
  • расширительный фланец
  • переходный фланец
  • кольцевая заглушка (часть фланцевого соединения)
  • дисковые заглушки и промежуточные кольца (часть фланцевого соединения)
Материалы фланцев
Наиболее распространенные материалы, используемые для производства фланцев это углеродистая сталь, нержавеющая сталь, чугун, алюминий, латунь, бронза, пластик и т.д. Кроме того, фланцы, как арматура и трубы для специального применения иногда имеют внутреннее покрытие в виде слоя материала совершенно другого качества, чем сами фланцы. Это футерованные фланцы. Материал фланцев, чаще всего, устанавливается при выборе труб. Как правило, фланец делают из того же материала, что и сами трубы.

Пример приварного фланца с буртиком 6" - 150#-S40
Каждый фланец, соответствующий стандарту ASME B16.5, имеет определенное количество стандартных размеров. Если конструктор из Японии, или человек готовящий проект к запуску в Канаде, или монтажник трубопровода в Австралии говорит о приварном фланце 6"-150#-S40 соответствующий стандарту ASME B16.5, то он имеет ввиду фланец, который изображен ниже.

В случае заказа фланца поставщику хотелось бы знать качество материала. Например, ASTM A105 - фланец из штампованной углеродистой стали, в то время как A182 - фланец из штампованной легированной стали. Таким образом, по правилам, для поставщика должны быть указаны оба стандарта: Сварной фланец 6"-150#-S40-ASME B16.5/ASTM A105.

КЛАСС ДАВЛЕНИЯ

Класс давления или классификация для фланцев будет представлена в фунтах. Для обозначения класса давления используют разные названия. Например: 150 Lb или 150Lbs или 150# или Класс 150, обозначают одно и то же.
Кованные стальные фланцы имеют 7 основных классификаций:
150 Lbs - 300 Lbs - 400 Lbs - 600 Lbs - 900 Lbs - 1500 Lbs - 2500 Lbs

Концепция классификации фланцев ясна и очевидна. Фланец класса 300 может работать при больших давлениях, чем фланец класса 150, потому что фланец класса 300 имеет большее количество металла и выдерживает большие давления. Однако, есть ряд факторов, которые могут повлиять на предельное давление фланца.

ПРИМЕР
Фланцы могут выдерживать различные давления при различных температурах. При росте температуры, класс давления фланца уменьшается. Например, фланец класса 150 рассчитан на давление приблизительно 270 PSIG в условиях окружающей среды, 180 PSIG при 200 °C, 150 PSIG при 315 °C, и 75 PSIG при 426 °C.

Дополнительными факторами является то, что фланцы могут быть сделаны из различных материалов, таких как: легированная сталь, литой и ковкий чугун, и т.д. Каждый материал имеет различные классы давления.

ПАРАМЕТР "ДАВЛЕНИЕ-ТЕМПЕРАТУРА"
Класс давление-температура определяет рабочее, максимально допустимое избыточное давление в барах при температуре в градусах Цельсия. Для промежуточных температур допускается линейная интерполяция. Интерполяция между классом обозначений не допускается.

Классификации по температуре-давлению
Класс Температура-Давление применим к фланцевым соединениям, который соответствует ограничениям на болтовых соединениях и прокладках, которые сделаны в соответствии с надлежащей практикой для сборки и центровки. За использование этих классов для фланцевых соединений, не удовлетворяющих этим ограничениям, обязанность ложится на пользователя.

Температура, показанная для соответствующего класса давления это температура внутренней оболочки детали. В основном, эта температура такая же, как у содержащейся жидкости. В соответствии с требованиями действующих кодексов и правил, при использовании класса давления соответствующего температуре, отличающейся от текущей жидкости, вся ответственность ложиться на заказчика. Для любой температуры ниже -29 °C, класс должен быть не выше, чем при использовании в -29 °C.

В качестве примера, ниже вы найдете две таблицы с группами материалов в соответствии с ASTM и две другие таблицы с классом температура-давление для этих материалов в соответствии с ASME B16.5.

Материалы ASTM группы 2-1.1
Номинальное обозначение
Штамповка
Литье
Пластины
C-Si A105 (1) A216 Gr.WCB(1)
A515 Gr.70(1)
C-Mn-Si A350 Gr.LF2(1) - A516 Gr.70(1),(2)
C-Mn-Si-V A350 Gr.LF6 Cl 1(3) - A537 Cl.1(4)
3½Ni
A350 Gr.LF3
- -
ЗАМЕЧАНИЯ :
  • (1)При длительном воздействии температуры выше 425°C, карбидная фаза стали может преобразоваться в графит. Допустимо, но не рекомендуется длительное использование свыше 425°C.
  • (2)Не использовать при температуре свыше 455°C
  • (3)Не использовать при температуре свыше 260°C
  • (4)Не использовать при температуре свыше 370°C
Класс Температура-Давление для материалов ASTM группы 2-1.1
Рабочее давление по классам
Температура °C 150 300
400
600
900
1500
2500
от 29 до 38
19.6 51.1 68.1 102.1 153.2 255.3 425.5
50 19.2 50.1 66.8 100.2 150.4 250.6 417.7
100 17.7 46.6 62.1 93.2 139.8 233 388.3
150 15.8 45.1 60.1 90.2 135.2 225.4 375.6
200 13.8 43.8 58.4 87.6 131.4 219 365
250 12.1 41.9 55.9 83.9 125.8 209.7 349.5
300 10.2 39.8 53.1 79.6 119.5 199.1 331.8
325 9.3 38.7 51.6 77.4 116.1 193.6 322.6
350 8.4 37.6 50.1 75.1 112.7 187.8 313
375 7.4 36.4 48.5 72.7 109.1 181.8 303.1
400 6.5 34.7 46.3 69.4 104.2 173.6 289.3
425 5.5 28.8 38.4 57.5 86.3 143.8 239.7
450 4.6 23 30.7 46 69 115 191.7
475 3.7 17.4 23.2 34.9 52.3 87.2 145.3
500 2.8 11.8 15.7 23.5 35.3 58.8 97.9
538 1.4 5.9 7.9 11.8 17.7 29.5 49.2
Класс Температура-Давление для материалов ASTM группы 2-2.3
Рабочее давление по классам
Температура °C 150 300
400
600
900
1500
2500
от 29 до 38
15.9
41.4
55.2
82.7
124.1
206.8
344.7
50 15.3
40
53.4
80
120.1
200.1
333.5
100 13.3
34.8
46.4
69.6
104.4
173.9
289.9
150 12
31.4
41.9
62.8
94.2
157
261.6
200 11.2
29.2
38.9
58.3
87.5
145.8
243
250 10.5
27.5
36.6
54.9
82.4
137.3
228.9
300 10
26.1
34.8
52.1
78.2
130.3
217.2
325 9.3
25.5
34
51
76.4
127.4
212.3
350 8.4
25.1
33.4
50.1
75.2
125.4
208.9
375 7.4
24.8
33
49.5
74.3
123.8
206.3
400 6.5
24.3
32.4
48.6
72.9
121.5
202.5
425 5.5
23.9
31.8
47.7
71.6
119.3
198.8
450 4.6
23.4
31.2
46.8
70.2 117.1
195.1

ПОВЕРХНОСТЬ ФЛАНЦА

От формы и исполнения поверхности фланца будет зависеть, где будет расположено уплотнительное кольцо или прокладка.

Наиболее используемые типы:

  • поверхность с выступом (RF)
  • плоская поверхность (FF)
  • паз под кольцевое уплотнение (RTJ)
  • с наружной и внутренней резьбой (M&F)
  • шпунтовое соединение (T&G)
ВЫСТУП (RF- Raised Face)

Поверхность с выступом, наиболее применимый тип фланца, который легко определить. Данный тип называется так, потому что поверхность прокладки выступает над поверхностью болтового соединения.

Диаметр и высота определяются по стандарту ASME B16.5 с помощью класса давления и диаметра. В классе давления до 300 Lbs высота равна, примерно 1,6 мм, а в классе давления от 400 до 2500 Lbs высота составляет около 6,4 мм. Класс давления фланца определяет высоту выступа поверхности. Предназначением (RF) фланца является концентрация большего давления на меньшую площадь прокладки, увеличивая тем самым предельное давление соединения.

Для параметров определяющих высоту всех описанных в данной статье фланцев используются размеры H и B, за исключением фланца с нахлесточным соединением, это необходимо понять и запомнить следующее:

В классах давления 150 и 300 Lbs, высота выступа составляет около 1,6 мм (1/16 дюйма). Почти все поставщики фланцев этих двух классов указывают в своих брошюрах или каталогах размеры H и B, включая поверхность выступа (см. Fig.1 ниже)

В классах давления 400, 600, 900, 1500 и 2500 Lbs высота выступа равна 6,4 мм (1/4 дюйма). В этих классах многие поставщики указывают размеры H и B, не включая высоту выступа (см. Fig.2 сверху)

В этой статье вы найдете два размера. Верхний ряд размеров не включает высоту выступа, а размеры в нижнем ряду включают высоту выступа.

ПЛОСКАЯ ПОВЕРХНОСТЬ (FF - Flat Face)
У фланца с плоской поверхностью (вся поверхность) прокладка находится в той же плоскости, что и болтовое соединение. Чаще всего, фланцы с плоской поверхностью используют там, где ответный фланец или фиттинг - литой.

Фланец с плоской поверхностью никогда не соединяется с фланцем, у которого есть выступ. Согласно ASME B31.1, при соединении плоских фланцев из чугуна с фланцами из углеродистой стали, выступ на стальном фланце должен быть убран, и вся поверхность должна быть уплотнена прокладкой. Это делается для сохранения тонкого, хрупкого чугунного фланца от образования трещин из-за выступа стального фланца.

ФЛАНЕЦ С ПАЗОМ ПОД КОЛЬЦЕВОЕ УПЛОТНЕНИЕ (RTJ - Ring Type Joint)
У RTJ фланцев прорезаны пазы в их поверхности, в которые вставлены стальные уплотнительные кольца. Фланцы герметизируются за счет того, что при затяжке болтов прокладка между фланцами вдавливается в пазы, деформируется, создавая тесный контакт - металл-К-металлу.

У RTJ фланца может быть выступ со сделанным в нем кольцевым пазом. Данный выступ не служит в качестве какого-либо уплотнения. Для RTJ фланцев, которые герметизируются с помощью кольцевых уплотнений, выступающие поверхности соединенных и затянутых фланцев могут контактировать друг с другом. В этом случае сжатая прокладка больше не будет нести дополнительных нагрузок, затяжка болтов, вибрация и смещения не смогут больше раздавить прокладку и уменьшит усилие затяжки.
Металлические уплотнительные кольца подходят для использования при высоких температурах и давлениях. Они сделаны с учетом правильного выбора материала и профиля и всегда применяются в соответствующих фланцах, обеспечивая хорошее и надежное уплотнение.

Кольцевые уплотнения изготовлены так, что герметизация осуществляется посредством "начальной линии контакта" или заклинивания между сопряженным фланцем и прокладкой. За счет применения давления на уплотнение через болтовую затяжку, более мягкий метал прокладки проникает в мелкодисперсную структуру более жесткого материала фланца, и создает очень плотное и эффективное уплотнение.

Наиболее используемые кольца:

Тип R-Oval согласно ASME B16.20
Подходит для фланцев ASME B16.5 класса давления от 150 до 2500.

Тип R-Octagonal согласно ASME 16.20
Улучшенная конструкция по сравнению с начальной R-Oval. Однако они могут использоваться только для плоских фланцев с пазом. Подходит для фланцев ASME B16.5 класса давления от 15 до 2500.

ФЛАНЦЫ С УПЛОТНИТЕЛЬНОЙ И ПОВЕРХНОСТЬЮ ТИПА ВЫСТУП-ВПАДИНА (LMF - Large Male Face; LFF - Large Female Face)


Фланцы этого типа должны совпадать. У одной поверхности фланца есть область, которая выходит за обычные пределы поверхности фланца (папа ). Другой фланец, или ответный фланец имеет соответствующее углубление (мама ), сделанном в его поверхности.

Полусвободная прокладка

  • Глубина выточки (выемки) обычно равна или меньше чем высота выступающей части, чтобы предотвратить контакт металл-металл при сжатии прокладки
  • Глубина выемки обычно не более чем на 1/16" больше чем высота выступа

ФЛАНЕЦ С УПЛОТНИТЕЛЬНОЙ ПОВЕРХНОСТЬЮ ТИПА ШИП-ПАЗ
(Выступ - Tounge Face - TF; Впадина - Groove Face - GF)


Фланцы этого типа тоже должны совпадать. У одного фланца есть кольцо с выступом (шип) сделанном на поверхности этого фланца, в то время, как на поверхности ответного проточен паз. Такие поверхности обычно встречаются на крышках насосов и крышках вентилей.

Зафиксированная прокладка

  • Размеры прокладки такие же или меньше чем высота паза
  • Прокладка шире паза не больше чем на 1/16"
  • Размеры прокладки будут совпадать с размерами паза
  • При разборке соединение должно разжиматься отдельно
Основные поверхности фланцев, такие как: RTJ, T&G и F&M никогда не соединяют вместе.

ПЛОСКАЯ ПОВЕРХНОСТЬ И ПАЗ


Зафиксированная прокладка

  • Одна поверхность - плоская, другая - с выемкой
  • Для применения там, где требуется точный контроль сжатия прокладки
  • Рекомендуются только упругие прокладки - спиральные, полые кольцевые, приводимые в действие давлением, и прокладки с металлической оболочкой

КОНЕЧНАЯ ОБРАБОТКА ПОВЕРХНОСТИ ФЛАНЦА
По коду ASME B16.5 требуется, чтобы поверхность фланца (выступ и плоская поверхность) имели определенную шероховатость, чтобы данная поверхность при совмещении с прокладкой обеспечивала уплотнение высокого качества.

Конечное рифление, концентрическое, либо в виде спирали, требует от 30 до 55 канавок на дюйм, что в результате дает шероховатость между 125 и 500 микро-дюймами. Это позволит производителям фланцев делать обработку места под прокладку металлического фланца любого класса.

Для трубопроводов, транспортирующих вещества групп А и Б технологических объектов I категории взрывоопасности, не допускается применение фланцевых соединений с гладкой уплотнительной поверхностью за исключением случаев применения спирально-навитых прокладок.

НАИБОЛЕЕ ИСПОЛЬЗУЕМЫЕ ПОВЕРХНОСТИ

Черновая обработка

Наиболее часто используемая при обработке любого фланца, потому что она подходит практически для всех обычных условий эксплуатации. При сжатии мягкая поверхность прокладки будет входить в обработанную поверхность, что поможет создать уплотнение, кроме того, возникает высокий уровень трения между соединенными частями. Конечная обработка для этих фланцев делается с помощью радиусного резца радиусом 1,6 мм при скорости подачи 0,88 мм на оборот для 12". Для 14" и более, обработка производится с помощью 3,2 миллиметрового радиусного резца при подаче 1,2 мм на оборот.

Спиральная насечка
Это может быть непрерывная или фонографическая спиральная канавка, но от черновой обработки она отличается тем, что канавка получается за счет использования 90 градусного резца, который создает V-образный профиль с углом рифления 45°.

Концентрическая насечка.
Как следует из названия, обработка состоит из концентрических канавок. Используется 90° резец и кольца распределяются равномерно по всей поверхности.

Гладкая поверхность.
Такая обработка визуально не оставляет следов инструмента. Такие поверхности, как правило, используются для прокладок с металлической поверхностью, к примеру: с двойной оболочкой, из полосовой стали, или гофрированного металла. Гладкая поверхность помогает создать уплотнение и зависит от плоскостности противоположной поверхности. Как правило, это достигается за счет контактной поверхности прокладки, сформированной непрерывной (иногда называемой фонографической), спиральной канавкой, сделанной 0,8 миллиметровым радиусным резцом, на подаче 0,3 мм на оборот, глубиной 0,05 мм. Это приведет к шероховатости между Ra 3,2 и 6,3 микрометра (125-250 микро-дюйма)

ПРОКЛАДКИ
Для того, чтобы сделать герметичное фланцевое соединение, необходимы прокладки.

Прокладка представляет собой сжатые листы или кольца, используемые для создания водонепроницаемого соединения между двумя поверхностями. Прокладки изготавливаются для работы при экстремальных температурах и давлениях, и доступны в исполнении из металлических, полуметаллических и неметаллических материалов.
К примеру, принцип уплотнения может заключаться в сжатии прокладки между двумя фланцами. Прокладка заполняет микроскопические пространства и неровности поверхности фланцев и, затем, образует уплотнение, которое предотвращает утечки жидкостей и газов. Требуется правильная и бережная установка прокладки, для того, чтобы предотвратить утечки во фланцевом соединении.

В этой статье будут описаны прокладки соответствующие ASME B16.20 (Металлические и полуметаллические прокладки для фланцев труб) и ASME B16.21 (Неметаллические, плоские прокладки для фланцев труб)

БОЛТЫ
Для соединения двух фланцев друг с другом необходимы болты. Количество будет определяться числом отверстий во фланце, а диаметр и длина болтов зависит от типа фланца и его класса давления. Наиболее часто применяемые болты в нефтяной и химической промышленности для фланцев ASME B16.5 это шпильки. Шпилька состоит из стержня с резьбой и двух гаек. Другой доступный тип болтов это обычный болт с шестигранной головкой и одной гайкой.

Размеры, допуски на размеры и т.п. были определены в стандартах ASME B16.5 и ASME B18.2.2, материалы - в различных ASTM стандартах.

МОМЕНТ ЗАТЯЖКИ

Чтобы получить герметичное фланцевое соединение, необходима правильная установка прокладки, болты должны иметь необходимый момент затяжки, а общее напряжение от затяжки должно равномерно распределяться по всему фланцу.

Необходимое растяжение осуществляется за счет момента затяжки (приложение предварительной нагрузки к креплению за счет поворота его гайки).

Правильный момент затяжки болта позволяет наиболее лучшим образом использовать его упругие свойства. Чтобы хорошо выполнять свою задачу болт должен вести себя подобно пружине. Во время работы, процесс затяжки оказывает осевую, предварительную нагрузку на болт. Конечно же эта растягивающая сила равна противоположным силам сжатия, приложенным к компонентам сборки. Она может называться усилием затяжки или растягивающим усилием.

ДИНАМОМЕТРИЧЕСКИЙ КЛЮЧ
Динамометрический ключ это общее название для ручного инструмента, который используется для приложения точного усилия затяжки соединений, будь то болт, или гайка. Это позволяет оператору измерять вращательное усилие (крутящий момент) приложенное к болту, которое должно совпадать со спецификацией.

Выбор техники правильной затяжки болта фланца требует опыта. Правильное применение любой из техник также требует квалификации, как инструмента, который будет использоваться, так и специалиста, который будет выполнять работу. Ниже приводятся наиболее часто используемые способы затяжки болтов:

  • затяжка от руки
  • пневмогайковерт
  • гидравлический динамометрический ключ
  • ручной динамометрический ключ с коромыслом или с зубчатой передачей
  • гидравлический натяжной механизм для болтов
ПОТЕРЯ МОМЕНТА ЗАТЯЖКИ
Потеря момента затяжки присуща любому болтовому соединению. Комбинированный эффект ослабления болтового соединения, (около 10% во время первых 24 часов после установки), ползучесть прокладки, вибрации в системе, температурное расширение и упругое взаимодействие во время затяжки болта способствуют потере момента затяжки. Когда потери момента затяжки достигают критических, внутреннее давление превышает силу сжатия, которое удерживает прокладку на своем месте, в этом случае может произойти подтекание либо прорыв.

Ключом к уменьшению этих эффектов является правильная установка прокладки. При установке прокладки, необходимо объединить вместе фланцы и плавно и параллельно, с наименьшим усилием затяжки, затянуть 4 болта, следуя правильной последовательности затяжки. Это даст снижение эксплуатационных затрат и повысит безопасность.

Также важна правильная толщина прокладки. Чем толще прокладка, тем выше ее ползучесть, что, в свою очередь, может привести к потере момента затяжки. По стандарту ASME для фланцев с рифленой поверхностью, как правило, рекомендуют прокладку толщиной 1,6 мм. Более тонкие материалы могут работать при более высоких нагрузках на прокладку и, следовательно, больших внутренних давлениях.

СМАЗКА УМЕНЬШАЕТ ТРЕНИЕ
Смазка уменьшает трение во время затяжки, уменьшает срывы болта во время установки и увеличивает срок службы. Изменение коэффициента трения влияет на величину предварительного натяга, достигаемого на определенном моменте затяжки. Больший коэффициент трения приводит к меньшему преобразованию момента в предварительный натяг. Значение коэффициента трения, обеспечиваемое производителем смазки должно быть известно, чтобы точно установить требуемую величину крутящего момента.

Смазка или противозаклинивающие соединения должны наноситься и на поверхность гайки подшипника, и на наружную резьбу.

ПОСЛЕДОВАТЕЛЬНОСТЬ ЗАТЯЖКИ
Первый проход, слегка затянуть первый болт, затем следующий, находящийся напротив него, затем на четверть оборота по кругу (или 90 градусов), чтобы подтянуть третий болт и, напротив него, четвертый. Продолжайте эту последовательность до тех пор, пока не затянете все болты. При затяжке фланцев с четырьмя болтами, используйте схему крест-накрест.

ПОДГОТОВКА ЗАКРЕПЛЕНИЯ ФЛАНЦА
Чтобы достичь герметичности во фланцевых соединениях, необходимо, чтобы все компоненты были точными.

Перед началом процесса соединения необходимо сделать следующие шаги, чтобы избежать проблем в будущем:

  • Очистить поверхности фланцев и проверить на царапины, поверхности должны быть чистыми и на них не должно быть никаких дефектов (неровности, ямки, вмятин и т.д.)
  • Осмотрите все болты и гайки на наличие повреждений или коррозию резьбы. Замените или отремонтируйте болты или гайки при необходимости
  • Удалите заусенцы со всех резьб
  • Смажьте резьбы болтов или шпилек и поверхности гаек, прилегающих к фланцу или шайбе. В большинстве приложений рекомендуется применять закаленные шайбы.
  • Установите новую прокладку и убедитесь, что она лежит по центру. НЕ ИСПОЛЬЗУЙТЕ СТАРУЮ ПРОКЛАДКУ, или же используйте несколько прокладок.
  • Проверьте соосность фланцев по стандарту процессных трубопроводов ASME B31.3
  • Отрегулируйте положение гаек, чтобы убедиться в том, что 2-3 витка резьбы возвышаются над ее верхней частью.
Независимо от того какой способ затяжки используется, сначала нужно сделать все проверки и подготовки.

Фланцевое соединение - наиболее уязвимое и слабое место трубопровода.

Сборка труб с фланцами является одной из наиболее распространенных и ответственных операций при изготовлении и монтаже трубопроводов, так как расстройство фланцевого соединения вызывает необходимость отключения трубопровода.

Пропуски среды через неплотности фланцевых соединений в процессе испытания и эксплуатации трубопроводов происходят вследствие слабой затяжки фланцев, перекосов между плоскостями фланцев, некачественной очистки уплотнительных поверхностей фланцев перед установкой новой прокладки, неправильной установки прокладки между фланцами, применения.некачественного прокладочного материала или материала, который не соответствует параметрам среды, дефектов на уплотнительных поверхностях (зеркалах) фланцев.

Процесс сборки фланцевого соединения состоит из установки (напасовки), выверки и крепления фланцев на концах труб, установки прокладки и соединения двух фланцев болтами или шпильками. Соединяемые участки труб перед сборкой фланцевого соединения выверяют на прямолинейность их осей.

При напасовке фланцев на трубы в соответствии со СНиП ШТ.9-62 должны быть соблюдены следующие требования.

Отклонение от перпендикулярности фланца п к оси трубы (перекос), измеренное по наружному диаметру фланца (рис. 99, а) не должно превышать 0,2 мм на каждые 100 мм диаметра трубопровода, предназначенного для работы под давлением до 16 кгс/см 2 , 0,1 мм - под давлением от 16 кгс/см 2 до 64 кгс/см 2 и 0,05 мм под давлением выше 64 кгс/см 2 .

Устанавливать фланцы надо так, чтобы отверстия для болтов и шпилек были расположены симметрично главным осям (вертикальной и горизонтальной), но не совпадали с ними (рис. 99,6). Смещения осей болтовых отверстий во фланцах т относительно оси симметрии не должны превышать ± 1 мм при диаметре отверстий 18-25 мм, ±1,5 мм - при 30-34 мм и ±2 мм - при 41 мм.

Смещение осей отверстий фланца по окружности трубы проверяют с помощью отвеса или уровня, по которым находят вертикальную или горизонтальную ось, а затем линейкой контролируют смещение отверстий.

Перпендикулярность фланца проверяют контрольным угольником (рис. 100) и щупом. Зазор между фланцем 2 и угольником 1 замеряют в точках, диаметрально противоположных точкам касания.

Для напасовки на трубы с условным проходом до 200 мм плоских и приварных встык фланцев с центровкой их по внутреннему диаметру трубы применяют приспособление, показанное на рис. 101. Приспособление состоит из рычажного устройства 1 установленного на штоке 3, и диска 5 . Для установки фланца 6 рычажный механизм вставляют внутрь трубы 2. При вращении штока 3 по часовой стрелке рычаги расходятся, прижимая планки 4 к стенке трубы, при этом диск устанавливается строго перпендикулярно оси трубы. Плоские фланцы устанавливают по диску приспособления (положение 1 ), а приварные встык - по торцу трубы и планкам приспособления (положение II ). После выверки положения фланца его прихватывают электродуговой сваркой.


Рис. 99. Положение фланца при установке на трубе:

а - отклонение от перпендикулярности фланца к осн. трубы,
б - смещение осей болтовых отверстий во фланцах относительно оси симметрии

Рис. 100. Контрольный угольник:

I - угольник, 2 - фланец, 3 - труба

Рис. 101. Приспособление для напасовки фланцев с центровкой по внутреннему диаметру трубы:

1 - рычажное устройство, 2 - труба, 3 - шток с воротком, 4 - планка, 5 - диск, 6 - фланец


При сборке элементов и узлов трубопроводов на сборочных стендах для напасовки фланцев применяют специальные передвижные приспособления.

Для напасовки фланцев приварных встык с условным проходом до 5О0 мм наиболее рационально приспособление, показанное на рис. 102, а. Привариваемый фланец устанавливают на сменные контрольные штифты 1 , изготовленные в соответствии с диаметром болтового отверстия фланца. Эти штифты с помощью двухзаходного винта 2 и рукоятки 3 разводят и фиксируют положение болтовых отверстий фланца симметрично вертикальной оси. Перпендикулярность фланца продольной оси трубы достигается прижатием его зеркала к плоскости установочной каретки 4. Совпадение оси фланца с осью трубы достигается перемещением каретки с фланцем по вертикали с помощью винта 5 и рукоятки 6. Приспособление установлено на направляющих роликах 7, и после сборки и прихватки элемента легко откатывается.

При сборке на таком приспособлении плоского фланца внутрь его вставляют установочное кольцо, чтобы труба не доходила до торца каретки (плоскости фланца) на требуемую величину. Недостаток данной конструкции заключается в необходимости индивидуальной центровки внутреннего отверстия фланца и трубы при сборке.

На рис. 102,6 показано приспособление для напасовки плоских фланцев с условным проходом до 500 мм. Оно отличается от описанного выше тем, что на установочной каретке вместе контрольных штифтов закреплена оправка 8, имеющая сери» цилиндрических выступов, диаметры которых соответствуют внутренним диаметрам собираемых фланцев. Ширину выступов принимают с учетом величины, на которую не доводят фланец. Торцовые поверхности выступов обработаны строго перпендикулярно продольной оси. Фланец надевают на трубу и прижимают зеркалом к торцовой поверхности оправки. Установочную каретку перемещают с помощью винта 5, чтобы она по высоте находилась на одной оси с трубой.


Рис. 102. Приспособления для напасовки фланцев:

а - приварных встык, б - плоских приварных; 1 - контрольный штифт, 2 - двухзаходный винт,
3, 6
- рукоятки, 4 - установочная каретка, 5 - винт, 7 - направляющие ролики, 8 - оправка


Если фланец не имеет перекоса или величина перекоса допускаемая, производят окончательную сборку соединения с установкой прокладок. Мягкие прокладки (из паронита, картона, асбеста) перед установкой смачивают водой и натирают с обеих сторон сухим графитом. Смазывать прокладки мастиками или графитом, разведенным на масле, нельзя, так как мастика и масло пригорают к зеркалам фланца и портят их поверхность.

Плотность фланцевого соединения в значительной степени зависит не только от чистоты поверхности зеркал фланцев, качества и размеров прокладки, но и от тщательной и умелой сборки и затяжки гаек. Перед сборкой фланцевых соединений с выступом и впадиной следует убедиться в том, что выступ одного фланца свободно входит во впадину сопрягаемого с ним фланца, а прокладка не имеет смещений в ту или иную сторону.

Сборка труб со свободными фланцами на приварном кольце или отбортованной трубе ничем не отличается от вышеизложенного и сводится в основном к подготовке конца трубы.

Исправление перекоса фланцев при их сборке путем натяга болтов или шпилек, а также устранение зазоров установкой клиновых прокладок не допускается. Такой натяг вызывает одностороннее сжатие прокладки и недопустимую вытяжку болтов или шпилек, в результате чего соединение становится неплотным. Перетянутые болты или шпильки в процессе эксплуатации могут разорваться.

Гайки фланцевых соединений с паронитовыми прокладками затягивают по способу крестообразного обхода. Сначала затягивают одну пару противоположно лежащих болтов, затем вторую пару, находящуюся под углом 90° к первой. Постепенно поперечным завертыванием гаек затягиваются все болты. При такой последовательности затяжки гаек не образуется перекосов во фланцевых соединениях.

Гайки с металлическими прокладками затягивают по способу кругового обхода, т. е. при трех- или четырехкратном круговом обходе равномерно затягивают все гайки. Гайки фланцевого соединения затягивают ручными и механизированными гаечными ключами с трещотками. К механизированным инструментам относятся ключи-гайковерты с электрическим или пневматическим приводом. Равномерность затяжки и величину холодного натяга шпилек фланцевого соединения и крышек арматуры на трубопроводах высокого давления контролируют динамометрическими ключами- путем измерения удлинения шпильки при затяжке. Допускаемый размер холодного натяга шпилек находится в пределах от 0,03 до 0,15 мм на каждые 100 мм длины шпильки.

Надежность любой системы зависит от надежности самого слабого звена системы. Сварные соединения стальных труб надежные и используются в большинстве случаев. Но возникают ситуации, при которых использование сварного соединения невозможно. Подключения различных фитингов, обеспечения разборного соединения, возможности профилактики и ремонта трубной арматуры а также рабочих узлов агрегатов, соединения разнородных труб: чугун-пластик, чугун-сталь, сталь-пластик, сталь-асбестоцемент, пластик-асбестоцемент и решения еще множества технологических задач. Обеспечить надежность и долговечность эксплуатации таких соединений должно фланцевое соединение. В общем конструкция фланцев предусматривает пару фланцев и уплотнительную прокладку и кольца, соединенные болтами или шпильками.

Фланцы - общие характеристики

Для унификации продукции и возможности использования данной продукции в различных странах мира без проведения дополнительной обработки введена четкая классификация фланцевых соединений. Иногда один и тот же фланец в различных классификациях будет иметь различные обозначения.

Основные классификации, использованные в мире:

  • ГОСТ - стандарт принятый в СССР, и действующие на постсоветском пространстве;
  • DIN - немецкий стандарт действующий в Европе;
  • ANSI/ASME - американский стандарт действующий в США, Японии и в Австралии.

Существуют таблицы перевода стандартов, в которых указаны, какому стандарту отвечает тот или иной фланец.

Для изготовления фланцев используют различные материалы:

  • чугун;
  • ковкий чугун;
  • углеродистые стали;
  • нержавеющие стали;
  • легированные стали;
  • полипропилен.

Полипропиленовые фланцы получили свое распространение в последние десятилетие. В основном используются для монтажа безнапорных систем, соединения ПЭ трубы с металлической, присоединения трубной арматуры, на которой установлено фланцевое крепление. Изготовляют такие фланцы, как и металлические, литьем или штамповкой.

Разделяют фланцы и по типам:

  • плоские(ГОСТ 12820-81);

  • воротниковые(ГОСТ 12821-81);


  • свободные фланцы на приварном кольце(ГОСТ 12822-80);


  • фланцы для сосудов и аппаратов(ГОСТ 28759.2-90);


  • кольцевая заглушка(ГОСТ 12836-80).

Допускается изготовление квадратных фланцев, которые имеют минимум 4 отверстия под болты или шпильки. Использовать такие фланцы можно на системах с максимальным давлением не более 4,0МПа.

Согласно номенклатуре и соответственно ГОСТ 12815—80 фланцы арматуры и соединительных частей трубопроводов имеют девять основных исполнений уплотнительной поверхности:

  • исп. 1 — с соединительным выступом, самое распространенное исполнение фланцев, имеет специальный соединительный выступ в форме фаски под углом 45°
  • исп. 2 — похож по исполнению с предыдущей моделью, только соединительный выступ идет под углом 90°;
  • исп. 3 — с впадиной с внутренней стороны и выступ с наружной под углом 45°;
  • исп. 4 — с шипом;
  • исп. 5 — с пазом в виде кольцевой выборки;
  • исп. 6 — под линзовую прокладку, с внутренней стороны выбрана фаска;
  • исп. 7 — под прокладку овального сечения, кольцевая выборка в форме с торцевой стороны;
  • исп. 8 — с шипом под фторопластовую прокладку;
  • исп. 9 — с пазом под фторопластовую прокладку.

Для фланцев сосудов и аппаратов имеются свои требования к исполнению, обозначенные в ГОСТ 28759.2-90, а для плоских приварных фланцев - в ГОСТ 28759.390

Конструктивные особенности фланцев

Фланцы, как любая трубная или запорная арматура, обладают несколькими конструктивными особенностями. При выборе и расшифровки обозначения фланцев эти особенности необходимо обязательно знать.

Условный проход

Условный проход фланца является внутренним диаметром трубы, фасонной части или запорной арматуры, на которую приваривается фланец. Он принимается исходя только из условного прохода трубы.

Для плоских приварных фланцев с условным проходом 100, 125, 150 в зависимости от исполнения указывается буква (А,Б,В) - от нее зависит внешний диаметр трубы, если буква не указана, считается по умолчанию буква А.

Ряды

Все геометрические размеры фланца буду зависеть от условного прохода. Один и тот же фланец с одинаковым условным проходом может быть изготовлен двумя способами - ряд1 и ряд2. Они отличаются разными межосевыми расстояниями между присоединительными отверстиями, а также в некоторых случаях разными диаметрами соединительных отверстий. По умолчанию фланцы изготовляют по ряду 2.

Давление

Важным свойством фланцевого соединения это возможность удерживать давление системы без протечек и разрушения системы. Этот показатель обозначается как условное давление. Показатель условного давления зависит от геометрических размеров фланца, материала изготовления, исполнения, уплотнительной прокладки.

Важно: При заказе фланцев следует помнить, что существуют разные размерности давления: в кгс/см2, Па(МПа), атм., бар. Поэтому необходимо точно указывать, на какое давление должно быть рассчитано данное изделие.

Температура

Рабочая температура жидкости станет температурой фланца, следует учесть, что параметры давления и температуры взаимозависимы. При увеличении температуры максимальное давление, под которым работает фланцевое соединение, будет падать. Зависимость можно выразить линейной интерполяцией. Зависимости между рабочей температурой и давление для каждого фланца приведены в специальных таблицах и ГОСТах.

Обозначение фланцев

Каждый из видов фланцев имеет свое специфическое обозначение, рассмотрим каждый из них.

Плоские приварные фланцы

Разберем на примере обозначение плоских приварных фланцев:

Фланец 1-65-25 09Г2С ГОСТ 12821-80

Фланец плоский приварной исполнения 1 с условным проходом(Ду) - 65мм, рассчитан на условное давление в 25кгс/см2 , изготовлен из стали 09Г2С в соответствии с ГОСТ 12821-80.

При выборе фланца под фторопластовую прокладку после цифры Ду, указывают букву Ф.

Воротниковые фланцы

Фланец 1-1000-100 ст. 12х18н10т ГОСТ 12821-80

Обозначает фланец исполнения 1, с условным проходом 1000, рассчитан под давление 100кгс/см2, изготовлен из стали 12х18н10т, которая является конструкционной нержавеющей сталью.

Для квадратных фланцев дополнительно в названии указывают - фланец квадратный.

Также как и в плоских фланцах при использовании фторопластовой прокладки указывают букву Ф.

Свободные фланцы на приварном кольце

Обозначение свободных фланцев как и плоских фланцев немного отличается. Поскольку в данном изделии используется приварное кольцо, то к обозначению фланца идет еще обозначение кольца, например:

Фланец 50-6 СТ20 ГОСТ 12822-80

Кольцо 1-50-6 СТ 35 ГОСТ 12822-80

Здесь: 50 - условный проход, условное давление 6кгс/см2, фланец изготовлен из стали ст20, кольцо из стали ст35.

Для условного прохода 100, 125, 150 необходимо также указывать букву(А, Б, В), по умолчанию - А.

Прокладки для фланцевых соединений

Герметизация узла или соединения, находящегося под избыточным давлением, часто в агрессивной среде занимает важное место в расчете фланцевого соединения.

В зависимости от используемого вида фланца или иго конструктивного исполнения, давления, температуры, химических свойств среды, в качестве герметизирующих прокладок используются:

  • КЩ(7338-77) - резина техническая кислотощелочная;
  • МБ(7338-77) - резина маслобензостойкая;
  • Т(7338-77) - резина техническая теплостойкая;
  • ПОН(481-80) - паронит общего назначения;
  • ПМБ(481-80) - паронит маслобензостойкий;
  • Картон асбестовый;
  • Фторопласт-4.

Затяжка фланцевых соединений

Затяжка фланцевых соединений - ключевой момент монтажа фланца. Чтобы достичь максимальной герметизации, необходимо чтобы все детали были точными.

Подготовка элементов

Поверхности фланцев очисть и обезжирить, проверить на наличие царапин, впадин и вмятин. Осмотреть на наличие коррозии самого фланца и крепежных элементов - болтов и гаек. Удалить заусеницы с резьбы, предварительно также можно «прогнать» по резьбе каждый болт и гайку. Смажьте резьбу болта, или шпильки. Подготовьте и установите прокладку. Убедитесь в правильности ее установки, она должна лежать по центру.

Важно: Не используйте старые прокладки, если нет возможности заменить прокладку допускается установка нескольких старых прокладок.

Последовательность затяжки

Надежную и правильную фиксацию фланца обеспечит правильный порядок затяжки болтов. Для этого слегка затените первый болт, следующий болт выбираете с противоположной стороны, затяжка также провести слегка. Третий болт, который затягиваете, отстает от первого на четверть оборота(90°) или близкий к этому углу. Четвертый - напротив третьего. Последовательность продолжить пока не будут затянуты все болты. При затяжке фланцев с креплением на 4 болта используют технику - крест-накрест.

Момент затяжки

Чтобы получить максимально герметическое соединение, болты должны иметь необходимый момент затяжки. Напряжение от затяжки должно быть равномерно распределится по фланцу. Во время затяжки на болт действует растягивающие усилие противоположное усилию затяжки соединения. При избыточном усилии затяжки можно сорвать резьбу на болте или оборвать сам болт.

Для регулировки усилия затяжки используют разные техники затяжки:

  • гидравлической натяжной механизм;
  • гидравлический динамометрический ключ;
  • пневмогайковерт;
  • ручной динамометрический ключ.

В крайнем случае можно использовать затяжку от руки, но подобным способом лучше работать профессионалу.

В независимости от выбранного способа затяжки усилие, с которым затягиваются гайки, должны отвечать спецификации изделия.

После установки фланца и запуска системы в первые 24 часа работы возможна потеря момента затяжки до 10%. Это присуще любому болтовому соединению за счет вибрации, усадки прокладки, изменению температуры.

Через сутки-двое дополнительно провести затяжку резьбовых соединений к установленному моменту, согласно спецификации.