Определение числа фибоначчи. Число бога, числа фибоначчи, золотое сечение

Очень часто на разнообразных олимпиадах попадаются задачи вроде этой, которые, как думается на первый взгляд, можно решить с помощью простого перебора. Но если мы подсчитаем количество возможных вариантов, то сразу убедимся в неэффективности такого подхода: например, простая рекурсивная функция, приведенная ниже, будет потреблять существенные ресурсы уже на 30-ом числе Фибоначчи, тогда как на олимпиадах время решения часто ограничено 1-5 секундами.

Int fibo(int n) { if (n == 1 || n == 2) { return 1; } else { return fibo(n - 1) + fibo(n - 2); } }

Давайте подумаем, почему так происходит. Например, для вычисления fibo(30) мы сначала вычисляем fibo(29) и fibo(28). Но при этом наша программа «забывает», что fibo(28) мы уже вычисляли при поиске fibo(29).

Основная ошибка такого подхода «в лоб» в том, что одинаковые значения аргументов функции исчисляются многократно - а ведь это достаточно ресурсоемкие операции. Избавиться от повторяющихся вычислений нам поможет метод динамического программирования - это прием, при использовании которого задача разбивается на общие и повторяющиеся подзадачи, каждая из которых решается только 1 раз - это значительно повышает эффективность программы. Этот метод подробно описан в , там же есть и примеры решения других задач.

Самый просто вариант улучшения нашей функции - запоминать, какие значения мы уже вычисляли. Для этого нужно ввести дополнительный массив, который будет служить как бы «кэшем» для наших вычислений: перед вычислением нового значения мы будем проверять, не вычисляли ли его раньше. Если вычисляли, то будем брать из массива готовое значение, а если не вычисляли - придётся считать его на основе предыдущих и запоминать на будущее:

Int cache; int fibo(int n) { if (cache[n] == 0) { if (n == 1 || n == 2) { cache[n] = 1; } else { cache[n] = fibo(n - 1) + fibo(n - 2); } } return cache[n]; }

Так как в данной задаче для вычисления N-ого значения нам гарантированно понадобится (N-1)-е, то не составит труда переписать формулу в итерационный вид - просто будем заполнять наш массив подряд до тех пор, пока не дойдём до нужной ячейки:

<= n; i++) { cache[i] = cache + cache; } cout << cache;

Теперь мы можем заметить, что когда мы вычисляем значение F(N) , то значение F(N-3) нам уже гарантированно никогда не понадобится. То есть нам достаточно хранить в памяти лишь два значения - F(N-1) и F(N-2) . Причём, как только мы вычислили F(N) , хранение F(N-2) теряет всякий смысл. Попробуем записать эти размышления в виде кода:

//Два предыдущих значения: int cache1 = 1; int cache2 = 1; //Новое значение int cache3; for (int i = 2; i <= n; i++) { cache3 = cache1 + cache2; //Вычисляем новое значение //Абстрактный cache4 будет равен cache3+cache2 //Значит cache1 нам уже не нужен?.. //Отлично, значит cache1 -- то значение, которое потеряет актуальность на следующей итерации. //cache5 = cache4 - cache3 => через итерацию потеряет актуальность cache2, т.е. он и должен стать cache1 //Иными словами, cache1 -- f(n-2), cache2 -- f(n-1), cache3 -- f(n). //Пусть N=n+1 (номер, который мы вычисляем на следующей итерации). Тогда n-2=N-3, n-1=N-2, n=N-1. //В соответствии с новыми реалиями мы и переписываем значения наших переменных: cache1 = cache2; cache2 = cache3; } cout << cache3;

Бывалому программисту понятно, что код выше, в общем-то ерунда, так как cache3 никогда не используется (он сразу записывается в cache2), и всю итерацию можно переписать, используя всего одно выражение:

Cache = 1; cache = 1; for (int i = 2; i <= n; i++) { cache = cache + cache; //При i=2 устареет 0-й элемент //При i=3 в 0 будет свежий элемент (обновили его на предыдущей итерации), а в 1 -- ещё старый //При i=4 последним элементом мы обновляли cache, значит ненужное старьё сейчас в cache //Интуитивно понятно, что так будет продолжаться и дальше } cout << cache;

Для тех, кто не может понять, как работает магия с остатком от деления, или просто хочет увидеть более неочевидную формулу, существует ещё одно решение.

Числа Фибоначчи... в природе и жизни

Леонардо Фибоначчи – один из величайших математиков Средневековья. В одном и своих трудов “Книга вычислений” Фибоначчи описал индо-арабскую систему исчисления и преимущества ее использования перед римской.

Определение
Числа Фибоначчи или Последовательность Фибоначчи – числовая последовательность, обладающая рядом свойств. Например, сумма двух соседних чисел последовательности дает значение следующего за ними (например, 1+1=2; 2+3=5 и т.д.), что подтверждает существование так называемых коэффициентов Фибоначчи, т.е. постоянных соотношений.

Последовательность Фибоначчи начинается так: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233…

2.

Полное определение чисел Фибоначчи

3.


Свойства последовательности Фибоначчи

4.

1. Отношение каждого числа к последующему более и более стремится к 0.618 по увеличении порядкового номера. Отношение же каждого числе к предыдущему стремится к 1.618 (обратному к 0.618). Число 0.618 называют(ФИ).

2. При делении каждого числа на следующее за ним, через одно получается число 0.382; наоборот – соответственно 2.618.

3. Подбирая таким образом соотношения, получаем основной набор фибоначчиевских коэффициентов: … 4.235, 2.618, 1.618, 0.618, 0.382, 0.236.

5.


Связь последовательности Фибоначчи и «золотого сечения»

6.

Последовательность Фибоначчм асимптотически (пpиближаясь все медленнее и медленнее) стpемится к некотоpому постоянному соотношению. Однако, это соотношение иppационально, то есть пpедставляет собой число с бесконечной, непредсказуемой последовательностью десятичных цифp в дpобной части. Его невозможно выразить точно.

Если какой-либо член последовательности Фибоначчи pазделить на пpедшествующий ему (напpимеp, 13:8), pезультатом будет величина, колеблющаяся около иppационального значения 1.61803398875… и чеpез pаз то пpевосходящая, то не достигающая его. Hо даже затpатив на это Вечность, невозможно узнать сотношение точно, до последней десятичной цифpы. Kpаткости pади, мы будем пpиводить его в виде 1.618. Особые названия этому соотношению начали давать еще до того, как Лука Пачиоли (сpедневековый математик) назвал его Божественной пpопоpцией. Cpеди его совpеменных названий есть такие, как Золотое сечение, Золотое сpеднее и oтношение веpтящихся квадpатов. Kеплеp назвал это соотношение одним из «сокpовищ геометpии». В алгебpе общепpинято его обозначение гpеческой буквой фи

Представим золотое сечение на примере отрезка.

Рассмотрим отрезок с концами A и B. Пусть точка С делит отрезок AB так что,

AC/CB = CB/AB или

AB/CB = CB/AC.

Представить это можно примерно так: A-–C--–B

7.

Золотое сечение – это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему.

8.

Отрезки золотой пропорции выражаются бесконечной иррациональной дробью 0,618…, если AB принять за единицу, AC = 0,382.. Kак мы уже знаем числа 0.618 и 0.382 являются коэффициентами последовательности Фибоначчи.

9.

Пропорции Фибоначчи и золотого сечения в природе и истории

10.


Важно отметить, что Фибоначчи как бы напомнил свою последовательность человечеству. Она была известна еще древним грекам и египтянам. И действительно, с тех пор в природе, архитектуре, изобразительном искусстве, математике, физике, астрономии, биологии и многих других областях были найдены закономерности, описываемые коэффициентами Фибоначчи. Просто удивительно, сколько постоянных можно вычислить пpи помощи последовательности Фибоначчи, и как ее члены проявляются в огромном количестве сочетаний. Однако не будет преувеличением сказать, что это не просто игра с числами, а самое важное математическое выражение природных явлений из всех когда-либо открытых.

11.

Пpиводимые ниже примеры показывают некоторые интересные приложения этой математической последовательности.

12.

1. Pаковина закручена по спирали. Если ее развернуть, то получается длина, немного уступающая длине змеи. Небольшая десятисантиметровая раковина имеет спираль длиной 35 см. Форма спирально завитой раковины привлекла внимание Архимеда. Дело в том, что отношение измерений завитков раковины постоянно и равно 1.618. Архимед изучал спираль раковин и вывел уравнение спирали. Cпираль, вычерченная по этому уравнению, называется его именем. Увеличение ее шага всегда равномерно. В настоящее время спираль Архимеда широко применяется в технике.

2. Растения и животные. Еще Гете подчеркивал тенденцию природы к спиральности. Винтообразное и спиралевидное расположение листьев на ветках деревьев подметили давно. Cпираль увидели в расположении семян подсолнечника, в шишках сосны, ананасах, кактусах и т.д. Cовместная работа ботаников и математиков пролила свет на эти удивительные явления природы. Выяснилось, что в расположении листьев на ветке семян подсолнечника, шишек сосны проявляет себя ряд Фибоначчи, а стало быть, проявляет себя закон золотого сечения. Паук плетет паутину спиралеобразно. Cпиралью закручивается ураган. Испуганное стадо северных оленей разбегается по спирали. Молекула ДНK закручена двойной спиралью. Гете называл спираль «кривой жизни».

Cреди придорожных трав растет ничем не примечательное растение - цикорий. Приглядимся к нему внимательно. От основного стебля образовался отросток. Тут же расположился первый листок. Отросток делает сильный выброс в пространство, останавливается, выпускает листок, но уже короче первого, снова делает выброс в пространство, но уже меньшей силы, выпускает листок еще меньшего размера и снова выброс. Если первый выброс принять за 100 единиц, то второй равен 62 единицам, третий – 38, четвертый – 24 и т.д. Длина лепестков тоже подчинена золотой пропорции. В росте, завоевании пространства растение сохраняло определенные пропорции. Импульсы его роста постепенно уменьшались в пропорции золотого сечения.

Ящерица живородящая. В ящерице с первого взгляда улавливаются приятные для нашего глаза пропорции – длина ее хвоста так относится к длине остального тела, как 62 к 38.

И в растительном, и в животном мире настойчиво пробивается формообразующая тенденция природы – симметрия относительно направления роста и движения. Здесь золотое сечение проявляется в пропорциях частей перпендикулярно к направлению роста. Природа осуществила деление на симметричные части и золотые пропорции. В частях проявляется повторение строения целого.

Пьер Kюри в начале нашего столетия сформулировал ряд глубоких идей симметрии. Он утверждал, что нельзя рассматривать симметрию какого-либо тела, не учитывая симметрию окружающей среды. Закономерности золотой симметрии проявляются в энергетических переходах элементарных частиц, в строении некоторых химических соединений, в планетарных и космических системах, в генных структурах живых организмов. Эти закономерности, как указано выше, есть в строении отдельных органов человека и тела в целом, а также проявляются в биоритмах и функционировании головного мозга и зрительного восприятия.

3. Космос. Из истории астрономии известно, что И. Тициус, немецкий астроном XVIII в., с помощью этого ряда (Фибоначчи) нашел закономерность и порядок в расстояниях между планетами солнечной системы

Однако один случай, который, казалось бы, противоречил закону: между Марсом и Юпитером не было планеты. Cосредоточенное наблюдение за этим участком неба привело к открытию пояса астероидов. Произошло это после смерти Тициуса в начале XIX в.

Pяд Фибоначчи используют широко: с его помощью представляют архитектонику и живых существ, и рукотворных сооружений, и строение Галактик. Эти факты – свидетельства независимости числового ряда от условий его проявления, что является одним из признаков его универсальности.

4. Пирамиды. Многие пытались разгадать секреты пирамиды в Гизе. В отличие от других египетских пирамид это не гробница, а скоpее неразрешимая головоломка из числовых комбинаций. Замечательные изобpетательность, мастерство, время и труд аpхитектоpов пирамиды, использованные ими пpи возведении вечного символа, указывают на чрезвычайную важность послания, которое они хотели передать будущим поколениям. Их эпоха была дописьменной, доиероглифической и символы были единственным средством записи открытий. Kлюч к геометро-математическому секрету пирамиды в Гизе, так долго бывшему для человечества загадкой, в действительности был передан Геродоту храмовыми жрецами, сообщившими ему, что пирамида построена так, чтобы площадь каждой из ее граней была равна квадрату ее высоты.

Площадь тpеугольника

356 x 440 / 2 = 78320

Площадь квадpата

280 x 280 = 78400

Длина ребра основания пирамиды в Гизе равна 783.3 фута (238.7 м), высота пирамиды -484.4 фута (147.6 м). Длина ребра основания, деленная на высоту, приводит к соотношению Ф=1.618. Высота 484.4 фута соответствует 5813 дюймам (5-8-13) – это числа из последовательности Фибоначчи. Эти интересные наблюдения подсказывают, что конструкция пирамиды основана на пропорции Ф=1,618. Некоторые современные ученые склоняются к интерпретации, что древние египтяне построили ее с единственной целью – передать знания, которые они хотели сохранить для грядущих поколений. Интенсивные исследования пирамиды в Гизе показали, сколь обширными были в те времена познания в математике и астрологии. Во всех внутренних и внешних пропорциях пирамиды число 1.618 играет центральную роль.

Пирамиды в Мексике. Hе только египетские пиpамиды постpоены в соответствии с совеpшенными пpопоpциями золотого сечения, то же самое явление обнаpужено и у мексиканских пиpамид. Возникает мысль, что как египетские, так и мексиканские пиpамиды были возведены пpиблизительно в одно вpемя людьми общего происхождения.

Последовательность Фибоначчи определяется следующим образом:

Несколько первых её членов:

История

Эти числа ввёл в 1202 г. Леонардо Фибоначчи (Leonardo Fibonacci) (также известный как Леонардо Пизанский (Leonardo Pisano)). Однако именно благодаря математику 19 века Люка (Lucas) название "числа Фибоначчи" стало общеупотребительным.

Впрочем, индийские математики упоминали числа этой последовательности ещё раньше: Гопала (Gopala) до 1135 г., Хемачандра (Hemachandra) — в 1150 г.

Числа Фибоначчи в природе

Сам Фибоначчи упоминал эти числа в связи с такой задачей: "Человек посадил пару кроликов в загон, окруженный со всех сторон стеной. Сколько пар кроликов за год может произвести на свет эта пара, если известно, что каждый месяц, начиная со второго, каждая пара кроликов производит на свет одну пару?". Решением этой задачи и будут числа последовательности, называемой теперь в его честь. Впрочем, описанная Фибоначчи ситуация — больше игра разума, чем реальная природа.

Индийские математики Гопала и Хемачандра упоминали числа этой последовательности в связи с количеством ритмических рисунков, образующихся в результате чередования долгих и кратких слогов в стихах или сильных и слабых долей в музыке. Число таких рисунков, имеющих в целом долей, равно .

Числа Фибоначчи появляются и в работе Кеплера 1611 года, который размышлял о числах, встречающихся в природе (работа "О шестиугольных снежинках").

Интересен пример растения — тысячелистника, у которого число стеблей (а значит и цветков) всегда есть число Фибоначчи. Причина этого проста: будучи изначально с единственным стеблем, этот стебель затем делится на два, затем от главного стебля ответвляется ещё один, затем первые два стебля снова разветвляются, затем все стебли, кроме двух последних, разветвляются, и так далее. Таким образом, каждый стебель после своего появления "пропускает" одно разветвление, а затем начинает делиться на каждом уровне разветвлений, что и даёт в результате числа Фибоначчи.

Вообще говоря, у многих цветов (например, лилий) число лепестков является тем или иным числом Фибоначчи.

Также в ботанике известно явление ""филлотаксиса"". В качестве примера можно привести расположение семечек подсолнуха: если посмотреть сверху на их расположение, то можно увидеть одновременно две серии спиралей (как бы наложенных друг на друга): одни закручены по часовой стрелке, другие — против. Оказывается, что число этих спиралей примерно совпадает с двумя последовательными числами Фибоначчи: 34 и 55 или 89 и 144. Аналогичные факты верны и для некоторых других цветов, а также для сосновых шишек, брокколи, ананасов, и т.д.

Для многих растений (по некоторым данным, для 90% из них) верен и такой интересный факт. Рассмотрим какой-нибудь лист, и будем спускаться от него вниз до тех пор, пока не достигнем листа, расположенного на стебле точно так же (т.е. направленного точно в ту же сторону). Попутно будем считать все листья, попадавшиеся нам (т.е. расположенные по высоте между стартовым листом и конечным), но расположенными по-другому. Нумеруя их, мы будем постепенно совершать витки вокруг стебля (поскольку листья расположены на стебле по спирали). В зависимости от того, совершать витки по часовой стрелке или против, будет получаться разное число витков. Но оказывается, что число витков, совершённых нами по часовой стрелке, число витков, совершённых против часовой стрелки, и число встреченных листьев образуют 3 последовательных числа Фибоначчи.

Впрочем, следует отметить, что есть и растения, для которых приведённые выше подсчёты дадут числа из совсем других последовательностей, поэтому нельзя сказать, что явление филлотаксиса является законом, — это скорее занимательная тенденция.

Свойства

Числа Фибоначчи обладают множеством интересных математических свойств.

Вот лишь некоторые из них:

Фибоначчиева система счисления

Теорема Цекендорфа утверждает, что любое натуральное число можно представить единственным образом в виде суммы чисел Фибоначчи:

где , , , (т.е. в записи нельзя использовать два соседних числа Фибоначчи).

Отсюда следует, что любое число можно однозначно записать в фибоначчиевой системе счисления , например:

причём ни в каком числе не могут идти две единицы подряд.

Нетрудно получить и правило прибавления единицы к числу в фибоначчиевой системе счисления: если младшая цифра равна 0, то её заменяем на 1, а если равна 1 (т.е. в конце стоит 01), то 01 заменяем на 10. Затем "исправляем" запись, последовательно исправляя везде 011 на 100. В результате за линейное время будет получена запись нового числа.

Перевод числа в фибоначчиеву систему счисления осуществляется простым "жадным" алгоритмом: просто перебираем числа Фибоначчи от больших к меньшим и, если некоторое , то входит в запись числа , и мы отнимаем от и продолжаем поиск.

Формула для n-го числа Фибоначчи

Формула через радикалы

Существует замечательная формула, называемая по имени французского математика Бине (Binet), хотя она была известна до него Муавру (Moivre):

Эту формулу легко доказать по индукции, однако вывести её можно с помощью понятия образующих функций или с помощью решения функционального уравнения.

Сразу можно заметить, что второе слагаемое всегда по модулю меньше 1, и более того, очень быстро убывает (экспоненциально). Отсюда следует, что значение первого слагаемого даёт "почти" значение . Это можно записать в строгом виде:

где квадратные скобки обозначают округление до ближайшего целого.

Впрочем, для практического применения в вычислениях эти формулы мало подходят, потому что требуют очень высокой точности работы с дробными числами.

Матричная формула для чисел Фибоначчи

Нетрудно доказать матричное следующее равенство:

Но тогда, обозначая

получаем:

Таким образом, для нахождения -го числа Фибоначчи надо возвести матрицу в степень .

Вспоминая, что возведение матрицы в -ую степень можно осуществить за (см.

Последовательность чисел Фибоначчи . Вы впервые слышите об этом и даже не предполагаете, из какой это области знаний? Оказывается, закономерность явлений природы, строение и многообразие живых организмов на нашей планете, всё, что нас окружает, поражая воображение своей гармонией и упорядоченностью, законы мироздания, движение человеческой мысли и достижения науки – всё это объясняет суммационная последовательность Фибоначчи .

Извечное стремление человека познать себя и окружающий мир двигало науку вперёд.

Одним из наиболее значимых достижений в математике является введение арабских цифр вместо римских. Оно принадлежит одному из самых замечательных ученых двенадцатого столетия Фибоначчи (1175 г.). Его именем было названо ещё одно сделанное им открытие – суммационную последовательность: 1,1,2,3,5,8,13,21,34,55,89,144,… Это – так называемые числа Фибоначчи .

Эта закономерность в математике интересовала ещё одного ученого средневековья – Фому Аквинского. Движимый желанием «алгеброй гармонию измерить», учёный сделал вывод о прямой связи математики и красоты. Эстетические чувства, возникающие при созерцании гармоничных, пропорционально созданных природой объектов, Фома Аквинский объяснял тем же принципом суммационной последовательности.

Этот принцип поясняет, что начиная с 1,1, следующим числом будет сумма двух предыдущих чисел. Эта закономерность имеет большое значение.Это последовательность все медленнее и медленнее – асимптотически – приближается к некоему постоянному отношению. Однако отношение это является иррациональным, то есть имеет в дробной части бесконечную и непредсказуемую последовательность цифр. Точное его выражение невозможно. Разделив любой член последовательности Фибоначчи на член, предшествующий ему, мы получим величину, которая колеблется возле значения 1.61803398875… (иррациональное), которая будет то не достигать, то превосходить его всякий раз. Даже Вечности не хватит для того, чтобы точно определить это соотношение. Для краткости мы будем использовать его в виде 1.618.

Средневековый математик Лука Пачиоли назвал это соотношение Божественной пропорцией. Кеплеpом суммационная последовательность названа “одним из сокровищ геометрии”. В современной науке суммационная последовательность Фибоначчи имеет несколько названий, не менее поэтичных: Отношение вертящихся квадратов, Золотое среднее, Золотое сечение. В математике его обозначают греческой буквой фи (Ф=1,618).

Асимптотический характер последовательности, ее колебания возле иррационального числа Фибоначчи, имеющие свойство затухать, станут понятнее, если рассмотреть соотношения первых членов этой последовательности. В примере ниже мы рассмотрим числа Фибоначчи приведем отношение второго к первому члену, третьего ко второму и так далее:
1:1 = 1.0000, это меньше фи на 0.6180
2:1 = 2.0000, это больше фи на 0.3820
3:2 = 1.5000, это меньше фи на 0.1180
5:3 = 1.6667, это больше фи на 0.0486
8:5 = 1.6000, это меньше фи на 0.0180
Двигаясь дальше по последовательности Фибоначчи, каждый ее новый член разделит следующий, все более и более приближаясь к недостижимому числу Ф.

Впоследствии мы увидим, что некоторые числа Фибоначчи , составляющие его суммационную последовательность, видны в динамике цен на различные товары; среди методов технического анализа Форекс используются уровни Фибоначчи . Колебания отношений возле 1.615 на ту или иную величину могут быть обнаружены в , в ней они фигурируют в Правиле чередования. Подсознательно каждый человек ищет пресловутую Божественную пропорцию, которая необходима для удовлетворения стремления к комфорту.

Если мы разделим любой член последовательности Фибоначчи на член, следующий за ним, мы получим обратную к 1.618 величину, то есть 1:1.618. Это тоже достаточно необычное явление, пожалуй, даже замечательное. Исходное соотношение является бесконечной дробью, следовательно, и данное соотношение тоже должно быть бесконечным.

Другой немаловажный факт заключается в следующем. Квадрат любого члена последовательности Фибоначчи равняется числу, которое стоит перед ним в последовательности, умноженному на то число, что идет следом за ним, плюс или минус.
5 2 = (3 x 8) + 1
8 2 = (5 x 13) – 1
13 2 = (8 x 21) + 1
Плюс и минус всегда чередуются, и в этом заключается проявление части Волновой Теории Эллиотта, которая называется Правилом чередования. Это правило гласит: сложные волны коррективного характера перемежаются с простыми, сильные волны импульсного характера – со слабыми волнами коррективного характера, и так далее.

Проявления Божественной пропорции в природе

Обнаруженная математическая последовательность позволяет вычислить бесконечное число постоянных величин. Члены этой последовательности всегда будут проявляться в нескончаемом количестве сочетаний.
С помощью установленной закономерности даётся математическое толкование природных явлений. В этой связи, открытию математической последовательности принадлежит одно из самых значительных мест в историческом знании.
Мы можем сослаться на целый ряд интересных теорий, выведенных на основе математической последовательности.

Пирамида в Гизе

Конструкция пирамиды основана на пропорции Ф=1,618. Это открытие было сделано после многочисленных попыток разгадать секреты этой пирамиды. Сама пирамида в Гизе представляется неким посланием потомкам, с тем, чтобы передать определенные знания законов математической последовательности. Во времена возведения пирамиды ее строители не располагали достаточными возможностями для выражения известных им закономерностей. В ту пору не существовала письменность, не использовались ещё и иероглифы. Однако создателям пирамиды удалось с помощью геометрической пропорции своего творения передать свои знания математической закономерности будущим поколениям.

Храмовые жрецы передали Геродоту секрет пирамиды в Гизе. Она выстроена таким образом, что площадь каждой грани равняется квадрату высоты этой грани.
Площадь тpеугольника: 356 x 440 / 2 = 78320
Площадь квадpата: 280 x 280 = 78400
Грань пирамиды в Гизе имеет длину 783.3 фута (238.7 м), ее высота составляет 484.4 фута (147.6 м). Разделив длину грани на высоту, вы придем к соотношению Ф=1.618. Высота 484.4 фута соответствует 5813 дюймам (5-8-13), а это не что иное, как числа последовательности Фибоначчи. Все эти наблюдения приводят нас к выводу, что вся конструкция пирамиды базируется на пропорции Ф=1,618.
– это числа из последовательности Фибоначчи. Эти интересные наблюдения подсказывают, что конструкция пирамиды основана на пропорции Ф=1,618.
Эти сведения дают основание полагать о высоком развитии в те времена знаний в области математики и астрологии. В строгом соответствии с числом 1.618 возведено это величайшее творение не только рук человека, но и его разума. Сами внутренние и внешние пропорции пирамиды, соблюдённые в строгом соответствии с законом Золотого сечения являются посланием нам, потомкам, из глубины веков величайшего знания.

Мексиканские пирамиды

Поражает воображение тот факт, что пирамиды в Мексике построены по такому же принципу. Невольно возникает предположение о строительстве мексиканских пирамид в одно время с египетскими, к тому же строители обладали знаниями о математическом законе Золотого сечения.
Поперечное сечение пирамиды обнаруживает форму лестницы. В пеpвом её яpусе 16 ступеней, второй содержит 42 ступени, третий – 68 ступеней. Числа базируются на последовательности Фибначчи по следующей схеме:
16 x 1.618 = 26
16 + 26 = 42
26 x 1.618 = 42
42 + 26 = 68
Число Ф = 1.618 лежит в основе пропорций мексиканской пиpамиды. (


Не потеряйте. Подпишитесь и получите ссылку на статью себе на почту.

Вам, конечно же, знакома идея о том, что математика является самой главной из всех наук. Но многие могут с этим не согласиться, т.к. порой кажется, что математика – это лишь задачи, примеры и тому подобная скукотища. Однако математика может запросто показать нам знакомые вещи с совершенно незнакомой стороны. Мало того – она даже может раскрыть тайны мироздания. Как? Давайте обратимся к числам Фибоначчи.

Что такое числа Фибоначчи?

Числа Фибоначчи являются элементами числовой последовательности, где каждое последующее посредством суммирования двух предыдущих, например: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89… Как правило, записывается такая последовательность формулой: F 0 = 0, F 1 = 1, F n = F n-1 + F n-2 , n ≥ 2.

Числа Фибоначчи могут начинаться и с отрицательных значений «n», но в таком случае последовательность будет двусторонней – она будет охватывать и положительные и отрицательные числа, стремясь к бесконечности в двух направлениях. Примером такой последовательности может послужить: -34, -21, -13, -8, -5, -3, -2, -1, 1, 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, а формула будет: F n = F n+1 — F n+2 или же F -n = (-1) n+1 Fn.

Создателем чисел Фибоначчи является один из первых математиков Европы средних веков по имени Леонардо Пизанский, которого, собственно и знают, как Фибоначчи – это прозвище он получил спустя много лет после своей смерти.

При жизни Леонардо Пизанский очень любил математические турниры, по причине чего в своих работах («Liber abaci» /«Книга абака», 1202; «Practica geometriae»/«Практика геометрии», 1220, «Flos»/«Цветок», 1225 год – исследование на тему кубических уравнений и «Liber quadratorum»/«Книга квадратов», 1225 – задачи о неопределенных квадратных уравнениях) очень часто разбирал всевозможные математические задачи.

О жизненном пути самого Фибоначчи известно крайне мало. Но достоверно известно то, что его задачи пользовались огромнейшей популярностью в математических кругах в последующие века. Одну из таких мы и рассмотрим далее.

Задача Фибоначчи с кроликами

Для выполнения задачи автором были поставлены следующие условия: есть пара новорождённых крольчат (самка и самец), отличающихся интересной особенностью – со второго месяца жизни они производят новую пару кроликов – тоже самку и самца. Кролики находятся в замкнутом пространстве и постоянно размножаются. И ни один кролик не умирает.

Задача : определить количество кроликов через год.

Решение :

У нас есть:

  • Одна пара кроликов в начале первого месяца, которая спаривается в конце месяца
  • Две пары кроликов во втором месяце (первая пара и потомство)
  • Три пары кроликов в третьем месяце (первая пара, потомство первой пары с прошлого месяца и новое потомство)
  • Пять пар кроликов в четвёртом месяце (первая пара, первое и второе потомство первой пары, третье потомство первой пары и первое потомство второй пары)

Количество кроликов в месяц «n» = количеству кроликов прошлого месяца + количество новых пар кроликов, другими словами, вышеназванная формула: F n = F n-1 + F n-2 . Отсюда получается рекуррентная числовая последовательность (о рекурсии мы скажем далее), где каждое новое число соответствует сумме двух предыдущих чисел:

1 месяц: 1 + 1 = 2

2 месяц: 2 + 1 = 3

3 месяц: 3 + 2 = 5

4 месяц: 5 + 3 = 8

5 месяц: 8 + 5 = 13

6 месяц: 13 + 8 = 21

7 месяц: 21 + 13 = 34

8 месяц: 34 + 21 = 55

9 месяц: 55 + 34 = 89

10 месяц: 89 + 55 = 144

11 месяц: 144 + 89 = 233

12 месяц: 233+ 144 = 377

И эта последовательность может продолжаться бесконечно долго, но учитывая, что задачей является узнать количество кроликов по истечении года, получается 377 пар.

Здесь важно также заметить, что одним из свойств чисел Фибоначчи является то, что если сопоставить две последовательные пары, а затем разделить большую на меньшую, то результат будет двигаться по направлению к золотому сечению, о котором мы также скажем ниже.

Пока же предлагаем вам ещё две задачи по числам Фибоначчи:

  • Определить квадратное число, о котором известно только, что если отнять от него 5 или прибавить к нему 5, то снова выйдет квадратное число.
  • Определить число, делящееся на 7, но при условии, что поделив его на 2, 3, 4, 5 или 6 в остатке будет 1.

Такие задачи не только станут отличным способом развития ума, но и занимательным времяпрепровождением. О том, как решаются эти задачи, вы также можете узнать, поискав информацию в Интернете. Мы же не будем заострять на них внимание, а продолжим наш рассказ.

Что же такое рекурсия и золотое сечение?

Рекурсия

Рекурсия является описанием, определением или изображением какого-либо объекта или процесса, в котором есть сам данный объект или процесс. Иначе говоря, объект или процесс можно назвать частью самого себя.

Рекурсия широко используется не только в математической науке, но также и в информатике, массовой культуре и искусстве. Применимо к числам Фибоначчи, можно сказать, что если число равно «n>2», то «n» = (n-1)+(n-2).

Золотое сечение

Золотое сечение является делением целого на части, соотносящиеся по принципу: большее относится к меньшему аналогично тому, как общая величина относится к большей части.

Впервые о золотом сечении упоминает Евклид (трактат «Начала» прим. 300 лет до н.э.), говоря и построении правильного прямоугольника. Однако более привычное понятие было введено немецким математиком Мартином Омом.

Приблизительно золотое сечение можно представить в качестве пропорционального деления на две разные части, к примеру, на 38% и 68%. Численное же выражение золотого сечения равно примерно 1,6180339887.

На практике золотое сечение используется в архитектуре, изобразительном искусстве (посмотрите работы ), кино и других направлениях. На протяжении долгого времени, впрочем, как и сейчас, золотое сечение считалось эстетической пропорцией, хотя большинством людей оно воспринимается непропорциональным – вытянутым.

Вы можете попробовать оценить золотое сечение сами, руководствуясь следующими пропорциями:

  • Длина отрезка a = 0,618
  • Длина отрезка b= 0,382
  • Длина отрезка c = 1
  • Соотношение c и a = 1,618
  • Соотношение c и b = 2,618

Теперь же применим золотое сечение к числам Фибоначчи: берём два соседних члена его последовательности и делим большее на меньшее. Получаем примерно 1,618. Если же возьмём то же самое большее число и поделим его на следующее большее за ним, то получим примерно 0,618. Попробуйте сами: «поиграйте» с числами 21 и 34 или какими-то другими. Если же провести этот опыт с первыми числами последовательности Фибоначчи, то такого результата уже не будет, т.к. золотое сечение «не работает» в начале последовательности. Кстати, чтобы определить все числа Фибоначчи, нужно знать всего лишь три первых последовательных числа.

И в заключение ещё немного пищи для ума.

Золотой прямоугольник и спираль Фибоначчи

«Золотой прямоугольник» — это ещё одна взаимосвязь между золотым сечением и числами Фибоначчи, т.к. соотношение его сторон равно 1,618 к 1 (вспоминайте число 1,618!).

Вот пример: берём два числа из последовательности Фибоначчи, например 8 и 13, и чертим прямоугольник с шириной 8 см и длинной 13 см. Далее разбиваем основной прямоугольник на мелкие, но их длина и ширина должна соответствовать числам Фибоначчи – длина одной грани большого прямоугольника должна равняться двум длинам грани меньшего.

После этого соединяем плавной линией углы всех имеющихся у нас прямоугольников и получаем частный случай логарифмической спирали – спираль Фибоначчи. Её основными свойствами являются отсутствие границ и изменение форм. Такую спираль можно часто встретить в природе: самыми яркими примерами являются раковины моллюсков, циклоны на изображениях со спутника и даже ряд галактик. Но более интересно то, что этому же правилу подчиняется и ДНК живых организмов, ведь вы помните, что оно имеет спиралевидную форму?

Эти и многие другие «случайные» совпадения даже сегодня будоражат сознание учёных и наводят на мысль о том, что всё во Вселенной подчинено единому алгоритму, причём, именно математическому. И эта наука кроет в себе огромное количество совсем нескучных тайн и загадок.